

96Boards CE RV1126 Development board product user manual V1.0

Revision History

Version Number	Revision Time	Revised Content	Reviser
V1. 0	20210320	Create for the first time	Kewf

1. Product Overview

TB-96AIoT-1126CE Development Board is a 96Boards CE HW Specification V2.0 Development Board based on Rockchip artificial intelligence chip RV1126 developed by BeiQi Technology.

RV1126 is manufactured by 14nm process with built-in NPU and selfdeveloped ISP. With multi-level noise reduction, 3-frame HDR, Smart AE smart auto-exposure, white balance, distortion correction and other technologies, it can not only ensure the dynamic range of the scene, but also meet the needs of black full-color and complex light environment to maintain clarity. At the same time, Smart H. 265 coding technology can save half of the back-end storage space; with its own AI algorithm, 2. OTops is powerful, Compatibility, support TensorFlow/MXNet/PyTorch/Caffe and other network models; support MIPI CIS, USB and other camera multi-interface input at the same time, is very suitable for IPC smart webcam products, face recognition gate/access/attendance products and battery IPC/smart doorbell/cat-eye products.

TB-96AIoT-1126CE development board is only 85mm x 54mm in size. It is very compact and can be easily embedded in various products.

CPU	M.2 Connector
• RV1126 of Rockchip	• 4G LTE/5G Module on M.2
• Quad-Core ARM Cortex-A7 and	connector
RISC-V MCU	External Connector
NPU	• Gigabit Ethernet×1 (RJ45)
• 2.0Tops, support INT8/ INT16	• USB2.0 HOST×2 (TypeA)
2D Graphics Acceleration Engine	• USB2.0 OTG×1 (MicroUSB)

1.1. Hardware Parameters

• Supports rotation, x/y	• HDMI1.4 OUT $\times 1$
mirroring	● Micro SD×1
● Supports alpha layer	● DC12V IN×1 (4.0mm*1.7mm)
blending	● SIM CARD×1
• Supports zooming in and out	LEDs
Video Codec	• 4×User LEDs
• Support multi-stream	● WiFi LED
encoding/decoding	• BT LED
(1)3840 x 2160@30fps + 720p@30	Debug
fps encoding	Debug MicrollSP
(2)3840 x 2160@30fps encoding +	• Debug MICIOUSD
3840 x 2160@30fps decoding	
Memory	Row Connectors
● RAM	● One 40-pin Low Speed (LS1)
1GB DDR3	expansion connector(UARTx2,
• Storage	SPI, I2S, I2Cx2, GPIO x12, DC
16GB eMMC	power (12V, 5V, 1.8V))
Support micro SD extension	● One 14-pin LOW
WIFI/BT	Speed(LS2)expansion connector
● 2.4GHz&5GHz	(SPK, MIC, PHONE)
IEEE802.11a/b/g/n/ac	● One 60-pin High Speed (HS)
• Bluetooth V5.0	expansion connector(2L+4L-MIPI
● WIFI/BT ANT×1	CSI,USB2.0, I2C x2)
FAN Connector	
• FAN connector $\times 1$	Physical & Operating
	Characteristics
Key	● Dimension:85mm*54mm
• Power ON/OFF	 Numder of Layers:8 Layers

•	RESET	•	Operating	Temperature:0 °C	to
•	Recovery		+55℃		
		•	Qualificat	ion certification:	NA

1.2. Software Parameters

System Support	AI Application Development
Linux(Buildroot or Debian9)	• Supports 8bit/16bit operations
DEMO	with AI up to 2.0TOPs;
● IPC Smart Webcam Class	• High computing power at full
Application	load and low power consumption
• Battery IPC, Smart Door Bell,	at light load;
Cat Eye Applications	• Compatible with
• Gate Lock/Access	Caffe/Mxnet/TensorFlow model,
Control/Attendance	supports multiple frameworks,
Application	supports mainstream layer
	types, and is easy to add
	custom layers;
	• The AI application development
	SDK supports C/C++ and Python,
	facilitates the conversion and
	debugging of floating-point to
	fixed-point network for
	customers, and is extremely
	convenient for development.

1.3. Hardware Block Diagram

1.4. RV1126 SoC Introduction

Rockchip RV1126 is a high performance processor SoC dedicated to visual processing. It can be widely used in intelligent upgrade related industries such as smart door lock, smart doorbell, webcam, driving recorder, game interaction, webcast, etc.

RV1126 is based on a quad-core arm Cortex A7 32-bit kernel. Each of the integrated NEON and FPU cores has a 32KB I cache and 32KB D cache, as well as a 512KB shared secondary cache. The built-in NPU supports INT8/INT16 hybrid operations and is computationally powerful. Many network models, such as TensorFlow/MXNet/PyTorch/Caffe, can be easily converted due to their strong compatibility.

System Peripheral	KV	1126	Connectivity
Clock & Reset			USB OTG 2.0
PMU	Cortex-A7 Quad-Core		USB HOST 2.0
PLL x 5	(32K/32K L1 I/D Cache)	RISC-V	PDM
DECOM	512KB L2 Cache		
Timer x 8ch			audPWM
PWM(12ch)			I2S/PCM(2ch) x2
Watchdog x 2	Multi-Med	dia Processor	I2S_TDM(8ch)
Crypto	14M ISP	NPU	UART x 6
SAR-ADC(6ch)			SPI x 2
TS-ADC(2ch)	VDPU52X(H.264/H.265)	VEPU34X(H.264/H.265)	12C x 6
Interrupt Controller			
DMAC	JPEG Encoder	JPEG Decoder	Giga-Ethernet
PVTM x 3	RGA		SDIO 3.0 x2
Mailbox		IEP	GPIO
Video Input Interface	face CAN		
MIPI-CSI/LVDS/SubLVDS X2			
16-bit DVP	External Me	mory Interface	Embedded Memor
Video Output Interface	eMMC4.51	SD3.0/MMC4.5	System SRAM (64KB)
MIPI-DSI	SPI NOR/NAND FI	SPI NOR/NAND Flash, SLC NAND Flash	
BT.1120	DDR3/DDR3L/DD	DDR3/DDR3L/DDR4/LPDDR3/LPDDR4	
RGB 24-bit LCD Controller			OTP (32Kbits)

1.5. Interface Description

40-pin Low Speed (LS1) expansion connector			
PIN NO.	Signal Name	PIN NO.	Signal Name
1	GND	2	GND
3	UART3_CTSN_MO	4	PWRON

5	UART3_TX_MO	6	RESET
7	UART3_RX_MO	8	SPI1_CLK_MO
9	UART3_RTSN_MO	10	SPI1_MISO_MO
11	UART4_TX_M2	12	SPI1_CSOn_MO
13	UART4_RX_M2	14	SPI1_MOSI_MO
15	I2C3_SCL_MO	16	I2S1_LRCK_MO
17	I2C3_SDA_MO	18	I2S1_SCLK_MO
19	I2C5_SCL_M1	20	I2S1_SDO_MO
21	I2C5_SDA_M1	22	I2S1_SDI_MO
23	GPIO3_C3_d	24	GPIO1_D6_d
25	GPIO3_C2_d	26	GPIO1_D7_d
27	GPIO3_C1_d	28	GPIO2_A0_d
29	GPIO3_B4_d	30	GPIO2_A1_d
31	GPIO3_B3_d	32	CSIO_PWREN_H
33	GPIO3_B2_d	34	CSI1_PWREN_H
35	VCC1V8_EXT	36	VCC12V_DCIN
37	VCC5V0_SYS	38	VCC12V_DCIN
39	GND	40	GND

14-pin Low Speed (LS2) expansion connector			
PIN NO.	Signal Name	PIN NO.	Signal Name
1	SPK_OUTP	2	HPR_OUT
3	SPK_OUTN	4	HPL_OUT
5	GND	6	HP_DET_H
7	MIC_L	8	VCC5V0_SYS
9	MIC_R	10	VCC12V_DCIN
11	MiC_BIAS	12	VCC12V_DCIN
13	GND	14	GND

60-pin High Speed (HS) expansion connector			
PIN NO.	Signal Name	PIN NO.	Signal Name
1	NA	2	MIPI_CSI_RXO_CLKP
3	NA	4	MIPI_CSI_RXO_CLKN
5	NA	6	GND
7	NA	8	MIPI_CSI_RXO_DOP
9	NA	10	MIPI_CSI_RXO_DON
11	NA	12	GND
13	GND	14	MIPI_CSI_RXO_D1P
15	MIPI_CSI_MCLK1	16	MIPI_CSI_RXO_D1N
17	MIPI_CSI_MCLKO	18	GND
19	GND	20	MIPI_CSI_RXO_D2P
21	NA	22	MIPI_CSI_RXO_D2N
23	NA	24	GND
25	GND	26	MIPI_CSI_RXO_D3P
27	NA	28	MIPI_CSI_RXO_D3N
29	NA	30	GND
31	GND	32	I2C1_SCL
33	NA	34	I2C1_SDA
35	NA	36	I2C2_SCL1
37	GND	38	I2C2_SDA1
39	NA	40	GND
41	NA	42	MIPI_CSI_RX1_DOP
43	GND	44	MIPI_CSI_RX1_DON
45	NA	46	GND
47	NA	48	MIPI_CSI_RX1_D1P

49	GND	50	MIPI_CSI_RX1_D1N
51	HUB2_DP3	52	GND
53	HUB2_DM3	54	MIPI_CSI_RX1_CLKP
55	GND	56	MIPI_CSI_RX1_CLKN
57	NA	58	GND
59	NA	60	NA

1.6. Assembly Dimensions

1.7. Scenarios

TB-96AIoT-1126CE development boards can be widely used in different fields, typical applications include:

- IPC Smart Webcam Product
- Battery IPC, Smart Door Bell, Cat Eye Products
- Gate Lock/Access Control/Attendance Products
- Education and Training Industry
- Internet of Things Artificial Intelligence Other Application Fields

2. Instructions for use

1 USB cable to Dubug		4	Connect mouse and keyboard
	Connect the Micro-USB end of the	(op	otional)
	USB cable to the debug port and		Insert a USB mouse and USB
	TypeA-USB to the computer host.		keyboard to the USB port of the
	Open the serial port tool of the host		development board
	computer and apply the following		Mouse and keyboard to watch/track
	configuration:		on HDMI display
	baud rate: 1500000	5 C	connect LTE module (optional)
	Data bits: 8		Insert LTE/5G module into M.2 port
	Stop Bit: 1		Insert SIM card at the same time
	Parity Check: None		
	flow control: None		
2 C	onnect HDMI cable (optional)	6 C	connect a USB-OTG cable (optional)
Cor	nnect one end of the HDMI cable to	Wł	nen firmware needs to be re burned,
the	development board HDMI port and	plu	g micro USB port of USB data cable
the	other end to a display that supports	int	o USB OTG port of development
HD	MI.	bo	ard, and typea USB at the other end to
		cor	nputer host
3 C	onnect to Ethernet (optional)	7 (Connect DC12V power cord (power
Plu	g wired Ethernet into RJ45 ports of	on)
the	development board	Со	nnect the 12V power plug, and when
		the	e power supply is connected, the
		de	velopment board starts automatically.