

MCP2517FD

External CAN FD Controller with SPI Interface

Features

<u>General</u>

- External CAN FD Controller with SPI Interface
- · Arbitration Bit Rate up to 1 Mbps
- · Data Bit Rate up to 8 Mbps
- · CAN FD Controller modes
 - Mixed CAN 2.0B and CAN FD mode
 CAN 2.0B mode
- Conforms to ISO11898-1:2015

Message FIFOs

- 31 FIFOs, configurable as transmit or receive FIFOs
- One Transmit Queue (TXQ)
- · Transmit Event FIFO (TEF) with 32 bit time stamp

Message Transmission

- Message transmission prioritization:
 - Based on priority bit field, and/or
 - Message with lowest ID gets transmitted first using the Transmit Queue (TXQ)
- Programmable automatic retransmission attempts: unlimited, 3 attempts or disabled

Message Reception

- · 32 Flexible Filter and Mask Objects
- · Each object can be configured to filter either:
- Standard ID + first 18 data bits, or
- Extended ID
- 32-bit Time Stamp

Special Features

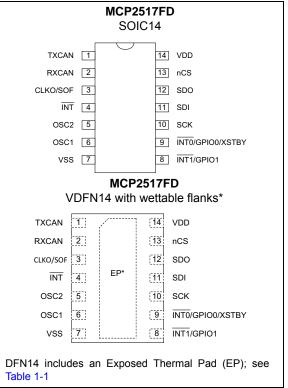
- VDD: 2.7 to 5.5V
- Active current: max. 12 mA @5.5 V, 40 MHz CAN clock
- Sleep current: 10 µA, typical
- · Message objects are located in RAM: 2 KB
- Up to 3 configurable interrupt pins
- Bus Health Diagnostics and Error counters
- Transceiver standby control
- Start of frame pin for indicating the beginning of messages on the bus
- · Temperature ranges:
 - High (H): -40°C to +150°C

Oscillator Options

- 40, 20 or 4 MHz crystal, or ceramic resonator; or external clock input
- Clock output with prescaler

SPI Interface

- Up to 20 MHz SPI clock speed
- Supports SPI modes 0,0 and 1,1
- Registers and bit fields are arranged in a way to enable efficient access via SPI


Safety Critical Systems

- SPI commands with CRC to detect noise on SPI interface
- Error Correction Code (ECC) protected RAM

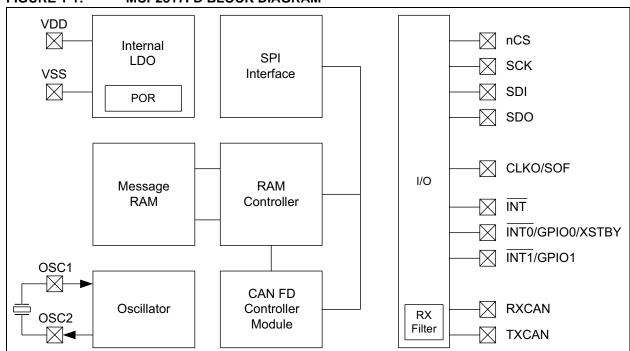
Additional Features

- GPIO pins: INT0 and INT1 can be configured as general purpose I/O
- Open drain outputs: TXCAN, INT, INTO, and INT1 pins can be configured as push/pull or open drain outputs

Package Types

1.0 DEVICE OVERVIEW

The MCP2517FD is a cost-effective and small-footprint CAN FD controller that can be easily added to a microcontroller with an available SPI interface. Therefore, a CAN FD channel can be easily added to a microcontroller that is either lacking a CAN FD peripheral, or that doesn't have enough CAN FD channels.


The MCP2517FD supports both, CAN frames in the Classical format (CAN2.0B) and CAN Flexible Data Rate (CAN FD) format, as specified in ISO11898-1:2015.

1.1 Block Diagram

Figure 1.1 shows the block diagram of the MCP2517FD. The MCP2517FD contains the following main blocks:

- The CAN FD Controller module implements the CAN FD protocol and contains the FIFOs, and Filters.
- The SPI interface is used to control the device by accessing SFRs and RAM.
- The RAM controller arbitrates the RAM accesses between the SPI and CAN FD Controller module.
- The Message RAM is used to store the data of the Message Objects.
- · The oscillator generates the CAN clock.
- The Internal LDO and POR circuit.
- The I/O control.

Note 1: This data sheet summarizes the features of the MCP2517FD. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "MCP2517FD Family Reference Manual".

FIGURE 1-1: MCP2517FD BLOCK DIAGRAM

1.2 Pin Out Description

Table 1-1 describes the functions of the pins.

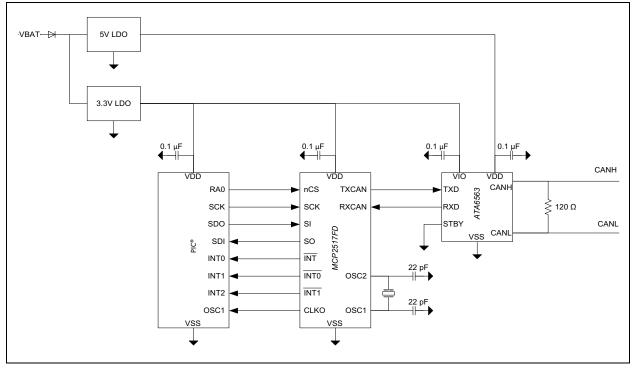
TABLE 1-1:	MCP2517FD STANDARD PINOUT VERSION

Pin Name	SOIC	VDFN	Pin Type	Description			
TXCAN	1	1	0	Transmit output to CAN FD transceiver			
RXCAN	2	2	I	Receive input from CAN FD transceiver			
CLKO/SOF	3	3	0	Clock output/Start of Frame output			
INT	4	4	0	Interrupt output (active low)			
OSC2	5	5	0	External oscillator output			
OSC1	6	6	I	External oscillator input			
VSS	7	7	Р	Ground			
INT1/GPIO1	8	8	I/O	RX Interrupt output (active low)/GPIO			
INT0/GPIO0/ XSTBY	9	9	I/O	TX Interrupt output (active low)/GPIO/ Transceiver Standby output			
SCK	10	10	I	SPI clock input			
SDI	11	11	I	SPI data input			
SDO	12	12	0	SPI data output			
nCS	13	13	I	SPI chip select input			
VDD	14	14	Р	Positive Supply			
EP - 15 P Exposed Pad; connect to VSS							
Legend: P =	Power, I = Inp	ut, O = Out	put				

1.3 Typical Application

Figure 1-2 shows an example of a typical application of the MCP2517FD. In this example, the microcontroller operates at 3.3V.

The MCP2517FD interfaces directly with microcontrollers operating at 2.7V to 5.5V. In addition, the MCP2517FD connects directly to high-speed CAN FD transceivers. There are no external level shifters required when connecting VDD of the MCP2517FD and the microcontroller to VIO of the transceiver.


The VDD of the CAN FD transceiver is connected to 5V.

The SPI interface is used to configure and control the CAN FD controller.

The MCP2517FD signals interrupts to the microcontroller using INT, INT0 and INT1. Interrupts need to be cleared by the microcontroller through SPI.

The CLKO pin provides the clock to the microcontroller.

FIGURE 1-2: MCP2517FD INTERFACING WITH A 3.3V MICROCONTROLLER

2.0 CAN FD CONTROLLER MODULE


Figure 2-1 shows the main blocks of the CAN FD Controller module:

- The CAN FD Controller module has multiple modes:
 - Configuration
 - Normal CAN FD
 - Normal CAN 2.0
 - Sleep
 - Listen Only
 - Restricted Operation
 - Internal and External Loop back modes
- The CAN FD Bit Stream Processor (BSP) implements the Medium Access Control of the CAN FD protocol described in ISO11898-1:2015. It serializes and de-serializes the bit stream, encodes and decodes the CAN FD frames, manages the medium access, acknowledges frames, and detects and signals errors.
- The TX Handler prioritizes the messages that are requested for transmission by the Transmit FIFOs. It uses the RAM Interface to fetch the transmit data from RAM and provides it to the BSP for transmission.
- The BSP provides received messages to the RX Handler. The RX Handler uses the Acceptance Filter to filter out messages that shall be stored into Receive FIFOs. It uses the RAM Interface to store received data into RAM.

- Each FIFO can be configured either as a Transmit or Receive FIFO. The FIFO Control keeps track of the FIFO Head and Tail, and calculates the User Address. For a TX FIFO, the User Address points to the address in RAM where the data for the next transmit message shall be stored. For a RX FIFO, the User Address points to the address in RAM where the data of the next receive message shall be read. The User notifies the FIFO that a message was written to or read from RAM by incrementing the Head/Tail of the FIFO.
- The Transmit Queue (TXQ) is a special transmit FIFO that transmits the messages based on the ID of the messages stored in the queue.
- The Transmit Event FIFO (TEF) stores the message IDs of the transmitted messages.
- A free-running Time Base Counter is used to time stamp received messages. Messages in the TEF can also be time stamped.
- The CAN FD Controller module generates interrupts when new messages are received or when messages were transmitted successfully.
- The Special Function Registers (SFR) are used to control and to read the status of the CAN FD Controller module.

Note 1: This data sheet summarizes the features of the CAN FD Controller module. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "MCP2517FD Family Reference Manual".

FIGURE 2-1: CAN FD CONTROLLER MODULE BLOCK DIAGRAM

MCP2517FD

NOTES:

3.0 MEMORY ORGANIZATION

Figure 3-1 illustrates the main sections of the memory and its address ranges:

- MCP2517FD Special Function Registers (SFR)
- CAN FD Controller Module SFR
- Message Memory (RAM)

The SFR are 32 bit wide. The LSB is located at the lower address, e.g., the LSB of C1CON is located at address 0x000, while its MSB is located at address 0x003.

Table 3-1 lists the MCP2517FD specific registers. The first column contains the address of the SFR.

Table 3-2 lists the registers of the CAN FD Controller Module. The first column contains the address of the SFR.

FIGURE 3-1: MEMORY MAP

MSB Address	◄	32	bit		LSB Address	
0x003	MSB			LSB	0x000	
	CAN	FD Control (752 B		SFR		
0x2EF					0x2EC	
0x2F3		Unimple (272 B			0x2F0	
0x3FF 0x403		(212	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0x3FC 0x400	
		RA (2 KB				
0xBFF 0xC03		Unimple (512 B			0xBFC 0xC00	
0xDFF		(012 E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0xDFC	
0xE03		MCP2517 (20 B			0xE00	
0xE13 0xE17		Rese (492 B			0xE10 0xE14	
0xFFF			,		0xFFC	

Address	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
E03	OSC	31:24				—	—	—	—	_		
E02		23:16	_	_	_	_	_	_	_			
E01		15:8	_	_	_	SCLKRDY	_	OSCRDY	—	PLLRDY		
E00 ⁽¹⁾		7:0		CLKOD	IV<1:0>	SCLKDIV	_	OSCDIS	—	PLLEN		
	IOCON	31:24	_	INTOD	SOF	TXCANOD	—	—	PM1	PM0		
		23:16	_	_	_	_	_	_	GPI01	GPIO0		
		15:8	_	_	_	—	_	_	LAT1	LAT0		
E04		7:0		XSTBYEN	-	_	_	_	TRIS1	TRIS0		
	CRC	31:24	_	_	_	_	_	_	FERRIE	CRCERRIE		
		23:16				—	_	_	FERRIF	CRCERRIF		
		15:8	CRC<15:8>									
E08		7:0				CRC	<7:0>					
	ECCCON	31:24	_			—			—			
		23:16	_	_	_	—	—	—	_	_		
		15:8	_				PARITY<6:0>					
E0C		7:0		-	_	_	_	DEDIE	SECIE	ECCEN		
	ECCSTAT	31:24	_	_	_	_		ERRADD)R<11:8>			
		23:16				ERRADI	DR<7:0>					
		15:8	_	—	—	—	_	_	—	_		
E10		7:0		-	_	_	_	DEDIF	SECIF	_		

TABLE 3-1: MCP2517FD REGISTER SUMMARY

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
03	C1CON	31:24		TXBWS	S<3:0>		ABAT		REQOP<2:0>				
02		23:16		OPMOD<2:0>		TXQEN	STEF	SERR2LOM	ESIGM	RTXAT			
01		15:8	_	—	_	BRSDIS	BUSY	WFT	<1:0>	WAKFIL			
00 ^[1]		7:0	_	PXEDIS	ISOCRCEN			DNCNT<4:0>					
	C1NBTCFG	31:24				BRP<	:7:0>						
		23:16				TSEG1	<7:0>						
		15:8	— TSEG2<										
04		7:0	—				SJW<6:0>						
	C1DBTCFG	31:24		-		BRP<7:0>							
		23:16	—	—	_			TSEG1<4:0>					
		15:8	—	—	—	—		TSEG	2<3:0>				
08		7:0	_	_	_	—		SJW	<3:0>				
	C1TDC	31:24		_	—	—	_	_	EDGFLTEN	SID11EN			
		23:16	—	—	—	—	—	—	TDCMC	D<1:0>			
		15:8	—		-		TDCO<6:0>						
0C		7:0	_				TDC	/<5:0>					
	C1TBC	31:24				TBC<3	1:24>						
		23:16		TBC<23:16>									
		15:8				TBC<	15:8>						
10		7:0				TBC<	7:0>						
	C1TSCON	31:24	_	_	—	—	—	—	—	_			
		23:16	_	—	_	_	_	TSRES	TSEOF	TBCEN			
		15:8	_		—	_	_	-	TBCPR	E<9:8>			
14		7:0	TBCPRE<7:0>										
	C1VEC	31:24	- RXCODE<6:0>										
		23:16	_			7	TXCODE<6:0>						
		15:8	_	—	—			FILHIT<4:0>					
18		7:0	_		-								
	C1INT	31:24	IVMIE	WAKIE	CERRIE	SERRIE	RXOVIE	TXATIE	SPICRCIE	ECCIE			
		23:16		—	—	TEFIE	MODIE	TBCIE	RXIE	TXIE			
		15:8	IVMIF	WAKIF	CERRIF	SERRIF	RXOVIF	TXATIF	SPICRCIF	ECCIF			
1C		7:0	_	—	—	TEFIF	MODIF	TBCIF	RXIF	TXIF			
	C1RXIF	31:24				RFIF<3							
		23:16				RFIF<2							
		15:8				RFIF<	15:8>						
20		7:0				RFIF<7:1>				—			
	C1TXIF	31:24				TFIF<3							
		23:16				TFIF<2							
		15:8				TFIF<							
24		7:0				TFIF<							
	C1RXOVIF	31:24				RFOVIF							
		23:16				RFOVIE							
		15:8				RFOVIF	<15:8>						
28		7:0				RFOVIF<7:1>				_			
	C1TXATIF	31:24				TFATIF<							
		23:16				TFATIF<							
		15:8				TFATIF							
2C		7:0				TFATIF	<7:0>						

TABLE 3-2:	CAN FD CONTROLLER MODULE REGISTER SUMMARY

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
	C1TXREQ	31:24				TXREQ<	:31:24>							
		23:16				TXREQ<	:23:16>							
		15:8		TXREQ<15:8>										
30		7:0		TXREQ<7:0>										
	C1TREC	31:24	_	_	_	_	_	_	_					
		23:16	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN				
		15:8				TEC<	7:0>							
34		7:0				REC<	7:0>							
	C1BDIAG0	31:24		DTERRCNT<7:0>										
		23:16				DRERRC	NT<7:0>							
		15:8				NTERRC	NT<7:0>							
38		7:0				NRERRC	NT<7:0>							
	C1BDIAG1	31:24	DLCMM	ESI	DCRCERR		DFORMERR	_	DBIT1ERR	DBIT0ERR				
		23:16	TXBOERR	—	NCRCERR	NSTUFERR	NFORMERR	NACKERR	NBIT1ERR	NBIT0ERR				
		15:8				EFMSGC	NT<15:8>							
3C		7:0		EFMSGCNT<7:0>										
	C1TEFCON	31:24	-	—	—			FSIZE<4:0>	i	i				
		23:16	—		—	—	—	—	—	—				
		15:8	_	—	_	_	_	FRESET	—	UINC				
40		7:0	_		TEFTSEN	_	TEFOVIE	TEFFIE	TEFHIE	TEFNEIE				
	C1TEFSTA	31:24	_	—	—	_	_		—	—				
		23:16	_	—	_	_	_		_	_				
		15:8	_	—	_	_	—	—	—	—				
44		7:0	_	_	_		TEFOVIF	TEFFIF	TEFHIF	TEFNEIF				
	C1TEFUA	31:24		TEFUA<31:24>										
		23:16				TEFUA<								
		15:8				TEFUA								
48		7:0				TEFUA								
	Reserved ⁽²⁾	31:24				Reserved								
		23:16				Reserved								
10		15:8				Reserved								
4C	OUTVOOON	7:0				Reserve	d<7:U>	50175 .4 0						
	C1TXQCON	31:24		PLSIZE<2:0>	<1.0>			FSIZE<4:0>						
		23:16 15:8	_	TXAT	<1.0>			TXPRI<4:0> FRESET	TXREQ	UINC				
50		7:0	TXEN			TXATIE		TXQEIE		TXQNIE				
50	C1TXQSTA	31:24	IALIN		_					TAQNIL				
	UTINGUIA	23:16	_											
		15:8	_	_				TXQCI<4:0>						
54		7:0	TXABT	TXLARB	TXERR	TXATIF	_	TXQEIF	_	TXQNIF				
~ 1	C1TXQUA	31:24				TXQUA<	:31:24>							
		23:16				TXQUA								
		15:8				TXQUA								
58		7:0				TXQUA								

TABLE 3-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
C1FIFOCON1	31:24		PLSIZE<2:0>				FSIZE<4:0>				
	23:16	—	TXAT	<1:0>		-	TXPRI<4:0>				
	15:8	—	_	—	—	—	FRESET	TXREQ	UINC		
	7:0	TXEN	RTREN	RXTSEN	TXATIE	RXOVIE	TFERFFIE	TFHRFHIE	TFNRFNI		
C1FIFOSTA1	31:24	_		_	—	_	_	_	_		
	23:16	_		_	_	_	_	_			
	15:8	:8 — — — FIFOCI<4:0>									
	7:0	TXABT	TXLARB	TXERR	TXATIF	RXOVIF	TFERFFIF	TFHRFHIF	TFNRFNI		
C1FIFOUA1	31:24		FIFOUA<31:24>								
	23:16		FIFOUA<23:16>								
	15:8	FIFOUA<15:8>									
	7:0				FIFOUA	<7:0>					
C1FIFOCON2	31:0				same as C1						
C1FIFOSTA2	31:0				same as C1						
C1FIFOUA2	31:0				same as C						
C1FIFOCON3	31:0				same as C1						
C1FIFOSTA3	31:0				same as C1						
C1FIFOUA3	31:0				same as C						
C1FIFOCON4	31:0				same as C1						
C1FIFOSTA4	31:0				same as C1						
C1FIFOUA4	31:0				same as C						
C1FIFOCON5	31:0				same as C1						
C1FIFOSTA5	31:0										
C1FIFOUA5	31:0		same as C1FIFOSTA1								
C1FIFOCON6	31:0		same as C1FIFOUA1 same as C1FIFOCON1								
C1FIFOSTA6	31:0				same as C1						
C1FIFOUA6	31:0				same as Cr						
C1FIFOCON7	31:0				same as C1						
C1FIFOCON7	31:0				same as C1						
	31:0				same as Cr						
C1FIFOUA7											
C1FIFOCON8	31:0				same as C1						
C1FIFOSTA8	31:0				same as C1						
C1FIFOUA8	31:0				same as C						
C1FIFOCON9	31:0				same as C1						
C1FIFOSTA9	31:0				same as C1						
C1FIFOUA9	31:0				same as C						
C1FIFOCON10					same as C1						
C1FIFOSTA10					same as C1						
C1FIFOUA10	31:0				same as C						
C1FIFOCON11					same as C1						
C1FIFOSTA11	31:0				same as C1						
C1FIFOUA11	31:0				same as C						
C1FIFOCON12					same as C1						
C1FIFOSTA12					same as C1						
C1FIFOUA12	31:0				same as C						
C1FIFOCON13					same as C1						
C1FIFOSTA13					same as C1						
C1FIFOUA13	31:0				same as C						
C1FIFOCON14	31:0										
C1FIFOSTA14	31:0				same as C1	FIFOSTA1					
C1FIFOCON C1FIFOSTA C1FIFOUA	114 14 14	114 31:0 .14 31:0 14 31:0 14 31:0	114 31:0 .14 31:0 14 31:0	114 31:0 .14 31:0 .14 31:0	114 31:0 .14 31:0 .14 31:0	I14 31:0 same as C1 14 31:0 same as C1	I14 31:0 same as C1FIFOCON1 .14 31:0 same as C1FIFOSTA1 .14 31:0 same as C1FIFOUA1	I14 31:0 same as C1FIFOCON1 .14 31:0 same as C1FIFOSTA1 .14 31:0 same as C1FIFOUA1	I14 31:0 same as C1FIFOCON1 .14 31:0 same as C1FIFOSTA1 .14 31:0 same as C1FIFOUA1		

TABLE 3-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED	TABLE 3-2:	REGISTER SUMMARY (CONTINUED)
---	------------	------------------------------

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
104	C1FIFOCON15	31:0			I	same as C1	FIFOCON1						
108	C1FIFOSTA15	31:0				same as C1							
10C	C1FIFOUA15	31:0		same as C1FIFOUA1									
110	C1FIFOCON16	31:0		same as C1FIFOCON1									
114	C1FIFOSTA16	31:0		same as C1FIFOSTA1									
118	C1FIFOUA16	31:0		same as C1FIFOUA1									
11C	C1FIFOCON17	31:0		same as C1FIFOCON1									
120	C1FIFOSTA17	31:0		same as C1FIFOSTA1									
124	C1FIFOUA17	31:0				same as C	IFIFOUA1						
128	C1FIFOCON18	31:0				same as C1	FIFOCON1						
12C	C1FIFOSTA18	31:0				same as C1	FIFOSTA1						
130	C1FIFOUA18	31:0				same as C	IFIFOUA1						
134	C1FIFOCON19	31:0				same as C1	FIFOCON1						
138	C1FIFOSTA19	31:0				same as C1	FIFOSTA1						
13C	C1FIFOUA19	31:0				same as C	IFIFOUA1						
140	C1FIFOCON20	31:0				same as C1	FIFOCON1						
144	C1FIFOSTA20	31:0				same as C1	FIFOSTA1						
148	C1FIFOUA20	31:0				same as C	IFIFOUA1						
14C	C1FIFOCON21	31:0				same as C1	FIFOCON1						
150	C1FIFOSTA21	31:0				same as C1	FIFOSTA1						
154	C1FIFOUA21	31:0				same as C	IFIFOUA1						
158	C1FIFOCON22	31:0				same as C1	FIFOCON1						
15C	C1FIFOSTA22	31:0				same as C1	FIFOSTA1						
160	C1FIFOUA22	31:0				same as C	IFIFOUA1						
164	C1FIFOCON23	31:0				same as C1	FIFOCON1						
168	C1FIFOSTA23	31:0				same as C1	FIFOSTA1						
16C	C1FIFOUA23	31:0				same as C	IFIFOUA1						
170	C1FIFOCON24	31:0				same as C1	FIFOCON1						
174	C1FIFOSTA24	31:0				same as C1	FIFOSTA1						
178	C1FIFOUA24	31:0				same as C	IFIFOUA1						
17C	C1FIFOCON25	31:0				same as C1	FIFOCON1						
180	C1FIFOSTA25	31:0				same as C1	FIFOSTA1						
184	C1FIFOUA25	31:0				same as C	IFIFOUA1						
188	C1FIFOCON26	31:0				same as C1	FIFOCON1						
18C	C1FIFOSTA26	31:0				same as C1	FIFOSTA1						
190	C1FIFOUA26	31:0				same as C							
194	C1FIFOCON27	31:0				same as C1	FIFOCON1						
198	C1FIFOSTA27	31:0				same as C1	FIFOSTA1						
19C	C1FIFOUA27	31:0				same as C	IFIFOUA1						
1A0	C1FIFOCON28	31:0				same as C1	FIFOCON1						
1A4	C1FIFOSTA28	31:0				same as C1	FIFOSTA1						
1A8	C1FIFOUA28	31:0				same as C	IFIFOUA1						
1AC	C1FIFOCON29	31:0				same as C1	FIFOCON1						
1B0	C1FIFOSTA29	31:0				same as C1	FIFOSTA1						
1B4	C1FIFOUA29	31:0				same as C	IFIFOUA1						
1B8	C1FIFOCON30	31:0				same as C1	FIFOCON1						
1BC	C1FIFOSTA30	31:0				same as C1	FIFOSTA1						
1C0	C1FIFOUA30	31:0				same as C	IFIFOUA1						
1C4	C1FIFOCON31	31:0				same as C1	FIFOCON1						
1C8	C1FIFOSTA31	31:0				same as C1	FIFOSTA1						
1CC	C1FIFOUA31	31:0				same as C	IFIFOUA1						

TABLE 3-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

			Bit		Bit	Bit	Bit	Bit	Bit	Bit	
Addr.	Name		31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0	
	C1FLTCON0	31:24	FLTEN3	_	—			F3BP<4:0>			
		23:16	FLTEN2		—			F2BP<4:0>			
		15:8	FLTEN1	_	_			F1BP<4:0>			
1D0		7:0	FLTEN0		—			F0BP<4:0>			
	C1FLTCON1	31:24	FLTEN7	_	_			F7BP<4:0>			
		23:16	FLTEN6	_	_	F6BP<4:0> F5BP<4:0>					
		15:8	FLTEN5	_	_						
1D4		7:0	FLTEN4	_	_			F4BP<4:0>			
	C1FLTCON2	31:24	FLTEN11	_	_			F11BP<4:0>			
		23:16	FLTEN10	_	_			F10BP<4:0>			
		15:8	FLTEN9		_			F9BP<4:0>			
1D8		7:0	FLTEN8		_			F8BP<4:0>			
	C1FLTCON3	31:24	FLTEN15		_			F15BP<4:0>			
	0.1.2.00110	23:16	FLTEN14	_	_			F14BP<4:0>			
		15:8	FLTEN13	_	_			F13BP<4:0>			
1DC		7:0	FLTEN12					F12BP<4:0>			
IDC	C1FLTCON4	31:24	FLTEN12		_						
	CIFLICON4		FLTEN19		_			F19BP<4:0> F18BP<4:0>			
		23:16									
		15:8	FLTEN17					F17BP<4:0>			
1E0		7:0	FLTEN16					F16BP<4:0>			
	C1FLTCON5	31:24	FLTEN23		—			F23BP<4:0>			
		23:16	FLTEN22		—			F22BP<4:0>			
		15:8	FLTEN21					F21BP<4:0>			
1E4		7:0	FLTEN20		—			F20BP<4:0>			
	C1FLTCON6	31:24	FLTEN27		—			F27BP<4:0>			
		23:16	FLTEN26		—			F26BP<4:0>			
		15:8	FLTEN25	—	—			F25BP<4:0>			
1E8		7:0	FLTEN24		—			F24BP<4:0>			
	C1FLTCON7	31:24	FLTEN31	—	—			F31BP<4:0>			
		23:16	FLTEN30	_	—			F30BP<4:0>			
		15:8	FLTEN29		—			F29BP<4:0>			
1EC		7:0	FLTEN28		—			F28BP<4:0>			
	C1FLTOBJ0	31:24	_	EXIDE	SID11			EID<17:6>			
		23:16				EID<1	2:5>				
		15:8			EID<4:0>				SID<10:8>		
1F0		7:0				SID<	7:0>				
	C1MASK0	31:24	_	MIDE	MSID11			MEID<17:6>			
		23:16			-	MEID<	12:5>				
		15:8			MEID<4:0>				MSID<10:8>		
1F4		7:0				MSID	<7:0>				
1F8	C1FLTOBJ1	31:0				same as C	1FLTOBJ0				
1FC	C1MASK1	31:0				same as C	1MASK0				
200	C1FLTOBJ2	31:0				same as C	1FLTOBJ0				
204	C1MASK2	31:0				same as C	1MASK0				
208	C1FLTOBJ3	31:0				same as C	1FLTOBJ0				
20C	C1MASK3	31:0				same as C	1MASK0				
210	C1FLTOBJ4	31:0				same as C	1FLTOBJ0				
214	C1MASK4	31:0				same as C	1MASK0				
218	C1FLTOBJ5	31:0				same as C	1FLTOBJ0				
21C	C1MASK5	31:0				same as C	1MASK0				

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

					i	i	1	· ·	, í	D ''
Addr.	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
220	C1FLTOBJ6	31:0				same as C	1FLTOBJ0			-
224	C1MASK6	31:0				same as C	1MASK0			
228	C1FLTOBJ7	31:0				same as C	1FLTOBJ0			
22C	C1MASK7	31:0				same as C	1MASK0			
230	C1FLTOBJ8	31:0				same as C	1FLTOBJ0			
234	C1MASK8	31:0				same as C	1MASK0			
238	C1FLTOBJ9	31:0				same as C	1FLTOBJ0			
23C	C1MASK9	31:0				same as C	1MASK0			
240	C1FLTOBJ10	31:0				same as C	1FLTOBJ0			
244	C1MASK10	31:0				same as C	1MASK0			
248	C1FLTOBJ11	31:0				same as C	1FLTOBJ0			
24C	C1MASK11	31:0				same as C	1MASK0			
250	C1FLTOBJ12	31:0				same as C	1FLTOBJ0			
254	C1MASK12	31:0				same as C	1MASK0			
258	C1FLTOBJ13	31:0				same as C	1FLTOBJ0			
25C	C1MASK13	31:0				same as C	1MASK0			
260	C1FLTOBJ14	31:0				same as C	1FLTOBJ0			
264	C1MASK14	31:0				same as C	1MASK0			
268	C1FLTOBJ15	31:0				same as C	1FLTOBJ0			
26C	C1MASK15	31:0				same as C	1MASK0			
270	C1FLTOBJ16	31:0				same as C	1FLTOBJ0			
274	C1MASK16	31:0				same as C	1MASK0			
278	C1FLTOBJ17	31:0				same as C	1FLTOBJ0			
27C	C1MASK17	31:0				same as C	1MASK0			
280	C1FLTOBJ18	31:0		same as C1FLTOBJ0						
284	C1MASK18	31:0		same as C1MASK0						
288	C1FLTOBJ19	31:0				same as C	1FLTOBJ0			
28C	C1MASK19	31:0				same as C	1MASK0			
290	C1FLTOBJ20	31:0				same as C	1FLTOBJ0			
294	C1MASK20	31:0				same as C	1MASK0			
298	C1FLTOBJ21	31:0				same as C	1FLTOBJ0			
29C	C1MASK21	31:0				same as C	1MASK0			
2A0	C1FLTOBJ22	31:0				same as C	1FLTOBJ0			
2A4	C1MASK22	31:0				same as C	1MASK0			
2A8	C1FLTOBJ23	31:0				same as C	1FLTOBJ0			
2AC	C1MASK23	31:0				same as C	1MASK0			
2B0	C1FLTOBJ24	31:0				same as C	1FLTOBJ0			
2B4	C1MASK24	31:0				same as C	1MASK0			
2B8	C1FLTOBJ25	31:0				same as C	1FLTOBJ0			
2BC	C1MASK25	31:0				same as C	1MASK0			
2C0	C1FLTOBJ26	31:0				same as C	1FLTOBJ0			
2C4	C1MASK26	31:0				same as C	1MASK0			
2C8	C1FLTOBJ27	31:0				same as C	1FLTOBJ0			
2CC	C1MASK27	31:0				same as C	1MASK0			
2D0	C1FLTOBJ28	31:0				same as C	1FLTOBJ0			
2D4	C1MASK28	31:0				same as C	1MASK0			
2D8	C1FLTOBJ29	31:0				same as C	1FLTOBJ0			
2DC	C1MASK29	31:0				same as C	1MASK0			_
2E0	C1FLTOBJ30	31:0				same as C	1FLTOBJ0			
2E4	C1MASK30	31:0				same as C	1MASK0			
2E8	C1FLTOBJ31	31:0				same as C	1FLTOBJ0			
		1					1MASK0			

TABLE 3-2: CAN FD CONTROLLER MODULE REGISTER SUMMARY (CONTINUED)

Note 1: The lower order byte of the 32-bit register resides at the low-order address.

3.1 MCP2517FD Specific Registers

- Register 3-1: OSC
- Register 3-2: IOCON
- Register 3-3: CRC
- Register 3-4: ECCCON
- Register 3-5: ECCSTAT

TABLE 3-3: REGISTER LEGEND

Symbol	Description	Symbol	Description
R	Readable bit	HC	Cleared by Hardware only
W	Writable bit	HS	Set by Hardware only
U	Unimplemented bit, read as '0'	1	Bit is set at Reset
S	Settable bit	0	Bit is cleared at Reset
С	Clearable bit	x	Bit is unknown at Reset

EXAMPLE 3-1:

R/W - 0 indicates the bit is both readable and writable, and reads '0' after a Reset.

MCP2517FD

REGISTER 3-	-1: OSC –	MCP2517F	D OSCILLATO		OL REGISTER					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—		—			
bit 31							bit 24			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0			
 bit 23	_		_			_	 bit 16			
U-0	U-0	U-0	R-0	U-0	R-0	U-0	R-0			
	—	—	SCLKRDY	—	OSCRDY		PLLRDY			
bit 15							bit 8			
U-0	R/W-1	R/W-1	R/W-0	U-0	HS/C-0	U-0	R/W-0			
	CLKOD	DIV<1:0>	SCLKDIV ⁽¹⁾	_	OSCDIS ⁽²⁾	_	PLLEN ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable	bit	t W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is un	known			
bit 31-13	Unimplemen	ted: Read as	' 0'							
bit 12	-									
	1 = SCLKDIN 0 = SCLKDIN									
bit 11	Unimplemen	ted: Read as	' 0'							
bit 10	OSCRDY: Cl	ock Ready								
	1 = Clock is 0 = Clock no	running and st t ready or off	able							
bit 9		ted: Read as	'0'							
bit 8	Pllrdy: Pli									
	1 = PLL Lock	ked								
	0 = PLL not I	ready								
bit 7	-	ted: Read as								
bit 6-5		0>: Clock Out	-							
	11 =CLKO is 10 =CLKO is 01 =CLKO is 00 =CLKO is	divided by 2								
bit 4		/stem Clock D	ivisor ⁽¹⁾							
	1 = SCLK is 0 = SCLK is	divided by 2								
bit 3		ted: Read as	'O'							
bit 2	-	ck (Oscillator)								
		abled, the dev	vice is in Sleep m	node.						
Note 1: This	s bit can only b	e modified in (Configuration mo	de.						

REGISTER 3-1: OSC – MCP2517FD OSCILLATOR CONTROL REGISTER

Note 1: This bit can only be modified in Configuration mode.

2: Clearing OSCDIS while in Sleep mode will wake-up the device and put it back in Configuration mode.

REGISTER 3-1: OSC – MCP2517FD OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 1 Unimplemented: Read as '0'
- bit 0 **PLLEN:** PLL Enable⁽¹⁾
 - 1 = System Clock from 10x PLL
 - 0 = System Clock comes directly from XTAL oscillator
- Note 1: This bit can only be modified in Configuration mode.
 - 2: Clearing OSCDIS while in Sleep mode will wake-up the device and put it back in Configuration mode.

REGISTER 3	3-2: IOCON	I = INPUI/O	UTPUT CONT	ROL REGIS	IER		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-1
_	INTOD	SOF	TXCANOD		_	PM1	PM0
oit 31	•				•		bit 2
U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x
_	—	_	—	_	_	GPIO1	GPIO0
bit 23							bit 1
U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x
—	—	—	—	—	—	LAT1	LAT0
bit 15							bit
U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
—	XSTBYEN	—	—	—	—	TRIS1 ⁽¹⁾	TRIS0 ⁽¹⁾
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	e bit	U = Unimplei	mented bit, rea	ad as '0'	
n = Value at l	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 29	0 = Push/Pul SOF: Start-Of 1 = SOF sign	-Frame signal nal on CLKO p					
	0 = Clock on		111				
bit 28	TXCANOD: T	XCAN Open I	Drain Mode				
	1 = Open Dra 0 = Push/Pul						
bit 27-26	Unimplemen	ted: Read as	'0'				
bit 25	PM1: GPIO P	in Mode					
	1 = Pin is use 0 = Interrupt		erted when CiIN ⁻	T.RXIF and R	XIE are set		
bit 24	PM0: GPIO P	in Mode					
	1 = Pin is use 0 = Interrupt		erted when CiIN ⁻	T.TXIF and TX	KIE are set		
bit 23-18	Unimplemen	ted: Read as	'0'				
oit 17	GPIO1: GPIC	1 Status					
	1 = VGPIO1 > 0 = VGPIO1 <						
oit 16	GPIOO: GPIO	00 Status					
	1 = VGPIO0 > 0 = VGPIO0 < 0 = VGPIO0 < 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =						
bit 15-10	1 = VGPIO0 > 0 = VGPIO0 < Unimplemen	VIL	ʻ0'				

REGISTER 3-2: IOCON – INPUT/OUTPUT CONTROL REGISTER

Note 1: If PMx = 0, TRISx will be ignored and the pin will be an output.

REGISTER 3-2: IOCON – INPUT/OUTPUT CONTROL REGISTER (CONTINUED)

bit 9	LAT1: GPIO1 Latch 1 = Drive Pin High 0 = Drive Pin Low
bit 8	LAT0: GPIO0 Latch 1 = Drive Pin High 0 = Drive Pin Low
bit 7	Unimplemented: Read as '0'
bit 6	XSTBYEN: Enable Transceiver Standby Pin Control 1 = XSTBY control enabled 0 = XSTBY control disabled
bit 5-2	Unimplemented: Read as '0'
bit 1	TRIS1: GPIO1 Data Direction ⁽¹⁾ 1 = Input Pin 0 = Output Pin
bit 0	TRIS0: GPIO0 Data Direction ⁽¹⁾ 1 = Input Pin 0 = Output Pin

Note 1: If PMx = 0, TRISx will be ignored and the pin will be an output.

MCP2517FD

REGISTER	3-3: CRC –	CRC REGIS	TER				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_		—	_	_	FERRIE	CRCERRIE
bit 31							bit 24
U-0	U-0	U-0	U-0	U-0	U-0	HS/C-0	HS/C-0
	_		_	_	_	FERRIF	CRCERRIF
bit 23							bit 16
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CRC<	15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CRC<	:7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 31-26	Unimplemen	ted: Read as ')'				
bit 25	FERRIE: CR	C Command Fo	ormat Error Inte	errupt Enable			
bit 24	CRCERRIE:	CRC Error Inter	rupt Enable				
bit 23-18	Unimplemen	ted: Read as 'o)'				
bit 17	FERRIF: CRO	C Command Fo	rmat Error Inte	errupt Flag			
		of Bytes misma CRC command			ommand occur	red	
bit 16	CRCERRIF:	CRC Error Inter	rupt Flag				
		match occurred error has occur	-				
h:+ 45 0			new Obl. f.				

bit 15-0 CRC<15:0>: Cycle Redundancy Check from last CRC mismatch

	ECCC	ON - ECC CC	NTROL RE	GISTER			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	—
bit 31							bit 24
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>					<u> </u>
bit 23							bit 16
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				PARITY<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	DEDIE	SECIE	ECCEN
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
bit 31-15	Unimplomon	ted: Read as '0	3				

bit 14-8 **PARITY<6:0>:** Parity bits used during write to RAM when ECC is disabled

bit 7-3 Unimplemented: Read as '0'

bit 2 DEDIE: Double Error Detection Interrupt Enable Flag

bit 1 SECIE: Single Error Correction Interrupt Enable Flag

bit 0 ECCEN: ECC Enable

1 = ECC enabled

0 = ECC disabled

REGISTER	3-5. ECC3	TAT - ECC 3	IAIUS REC	JULEN			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	—		ERRAD	DR<11:8>	
bit 31				·			bit 24
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
1.1.00			ERRAL	DR<7:0>			1.1.40
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	HS/C-0	HS/C-0	U-0
-					DEDIF	SECIF	_
bit 7						02011	bit C
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, rea	id as '0'	
-n = Value at	t POR	'1' = Bit is set		ʻ0' = Bit is cl	eared	x = Bit is unkr	nown
bit 31-28	Unimpleme	nted: Read as 'o	0'				
bit 27-16	ERRADDR<	11:0>: Address	where last E	CC error occurr	red		
bit 15-3	Unimpleme	nted: Read as 'o	0'				
bit 2	DEDIF: Doul	ble Error Detecti	ion Interrupt I	-lag			
	1 = Double	Error was detect	ted	-			
	0 = No Doul	ole Error Detecti	ion occurred				
bit 1	SECIF: Sing	le Error Correcti	ion Interrupt F	-lag			
	1 = Single E	rror was correct	ted	-			
		le Error occurre					

REGISTER 3-5: ECCSTAT – ECC STATUS REGISTER

Unimplemented: Read as '0'

bit 0

3.2 CAN FD Controller Module Registers

Configuration Registers

- Register 3-6: CiCON
- Register 3-7: CiNBTCFG
- Register 3-8: CiDBTCFG
- Register 3-9: CiTDC
- Register 3-10: CiTBC
- Register 3-11: CiTSCON

Interrupt and Status Registers

- Register 3-12: CiVEC
- Register 3-13: CilNT
- Register 3-14: CiRXIF
- Register 3-15: CiRXOVIF
- Register 3-16: CiTXIF
- Register 3-17: CiTXATIF
- Register 3-18: CiTXREQ

Error and Diagnostic Registers

- Register 3-19: CiTREC
- Register 3-20: CiBDIAG0
- Register 3-21: CiBDIAG1

TABLE 3-4: REGISTER LEGEND

Fifo Control and Status Registers

- Register 3-22: CiTEFCON
- Register 3-23: CiTEFSTA
- Register 3-24: CiTEFUA
- Register 3-25: CiTXQCON
- Register 3-26: CiTXQSTA
- Register 3-27: CiTXQUA
- Register 3-28: CiFIFOCONm m = 1 to 31
- Register 3-29: CiFIFOSTAm m = 1 to 31
- Register 3-30: CiFIFOUAm m = 1 to 31

Filter Configuration and Control Registers

- Register 3-31: CiFLTCONm m = 0 to 7
- Register 3-32: CiFLTOBJm m = 0 to 31
- Register 3-33: CiMASKm m = 0 to 31

Note: The 'i' shown in the register identifier denotes CANi, e.g., C1CON. The MCP2517FD contains one CAN FD Controller Module.

Sym	Description	Sym	Description
R	Readable bit	HC	Cleared by Hardware only
W	Writable bit	HS	Set by Hardware only
U	Unimplemented bit, read as '0'	1	Bit is set at Reset
S	Settable bit	0	Bit is cleared at Reset
С	Clearable bit	x	Bit is unknown at Reset

EXAMPLE 3-2:

R/W - 0 indicates the bit is both readable and writable, and reads '0' after a Reset.

REGISTER 3-6: CiCON – CAN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
	TXBWS	6<3:0>		ABAT		REQOP<2:0>	
bit 31							bit 24
R-1	R-0	R-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
N-1	OPMOD<2:0>	K-0	TXQEN ⁽¹⁾	STEF ⁽¹⁾	SERR2LOM	ESIGM ⁽¹⁾	RTXAT ⁽¹⁾
h:# 00					(1)		h:t 40
bit 23							bit 16
U-0	U-0	U-0	R/W-0	R-0	R/W-1	R/W-1	R/W-1
			BRSDIS	BUSY	WFT<	<1:0>	WAKFIL ⁽¹⁾
bit 15							bit 8
U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	PXEDIS ⁽¹⁾	ISOCRCEN			DNCNT<4:0>		
hit 7		(1)					hit C
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
hit 27	0000 = No de 0001 = 2 0010 = 4 0011 = 8 0100 = 16 0101 = 32 0110 = 64 0111 = 128 1000 = 256 1001 = 512 1010 = 1024 1011 = 2048 1111-1100	= 4096	nemiseione hit				
bit 27	1 = Signal all	All Pending Trai transmit FIFOs /ill clear this bit	to abort trans		e aborted		
bit 26-24	000 = Set No 001 = Set Sle 010 = Set Inte 011 = Set Lis 100 = Set Co 101 = Set Ext 110 = Set No	ep mode ernal Loopback ten Only mode nfiguration mod ernal Loopback	node; supports mode le < mode node; possible	mixing of CA	N FD and Class on CAN FD fram		mes

Note 1: These bits can only be modified in Configuration mode.

REGISTER 3-6:	CICON – CAN CONTROL	REGISTER ((CONTINUED))

bit 23-21	OPMOD<2:0> : Operation Mode Status bits 000 = Module is in Normal CAN FD mode; supports mixing of CAN FD and Classic CAN 2.0 frames 001 = Module is in Sleep mode 010 = Module is in Internal Loopback mode 011 = Module is in Listen Only mode 100 = Module is in Configuration mode 101 = Module is in External Loopback mode 110 = Module is Normal CAN 2.0 mode; possible error frames on CAN FD frames 111 = Module is Restricted Operation mode
bit 20	TXQEN : Enable Transmit Queue bit ⁽¹⁾ 1 = Enables TXQ and reserves space in RAM 0 = Don't reserve space in RAM for TXQ
bit 19	 STEF: Store in Transmit Event FIFO bit⁽¹⁾ 1 = Saves transmitted messages in TEF and reserves space in RAM 0 = Don't save transmitted messages in TEF
bit 18	SERR2LOM : Transition to Listen Only Mode on System Error bit ⁽¹⁾ 1 = Transition to Listen Only Mode 0 = Transition to Restricted Operation Mode
bit 17	ESIGM : Transmit ESI in Gateway Mode bit ⁽¹⁾ 1 = ESI is transmitted recessive when ESI of message is high or CAN controller error passive 0 = ESI reflects error status of CAN controller
bit 16	RTXAT : Restrict Retransmission Attempts bit ⁽¹⁾ 1 = Restricted retransmission attempts, CiFIFOCONm.TXAT is used 0 = Unlimited number of retransmission attempts, CiFIFOCONm.TXAT will be ignored
bit 15-13	Unimplemented: Read as '0'
bit 12	 BRSDIS: Bit Rate Switching Disable bit 1 = Bit Rate Switching is Disabled, regardless of BRS in the Transmit Message Object 0 = Bit Rate Switching depends on BRS in the Transmit Message Object
bit 11	BUSY : CAN Module is Busy bit 1 = The CAN module is transmitting or receiving a message 0 = The CAN module is inactive
bit 10-9	WFT<1:0>: Selectable Wake-up Filter Time bits 00 = T00FILTER 01 = T01FILTER 10 = T10FILTER 11 = T11FILTER
	Note: Please refer to Table 7-5.
bit 8	WAKFIL: Enable CAN Bus Line Wake-up Filter bit ⁽¹⁾ 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
bit 7	Unimplemented: Read as '0'
bit 6	 PXEDIS: Protocol Exception Event Detection Disabled bit⁽¹⁾ A recessive "res bit" following a recessive FDF bit is called a Protocol Exception. 1 = Protocol Exception is treated as a Form Error. 0 = If a Protocol Exception is detected, the CAN FD Controller Module will enter Bus Integrating state.
bit 5	 ISOCRCEN: Enable ISO CRC in CAN FD Frames bit⁽¹⁾ 1 = Include Stuff Bit Count in CRC Field and use Non-Zero CRC Initialization Vector according to ISO11898-1:2015 0 = Do NOT include Stuff Bit Count in CRC Field and use CRC Initialization Vector with all zeros

Note 1: These bits can only be modified in Configuration mode.

MCP2517FD

REGISTER 3-6: CICON – CAN CONTROL REGISTER (CONTINUED)

bit 4-0 DNCNT<4:0>: Device Net Filter Bit Number bits 10011-11111 = Invalid Selection (compare up to 18-bits of data with EID) 10010 = Compare up to data byte 2 bit 6 with EID17 ...

00001 = Compare up to data byte 0 bit 7 with EID0 00000 = Do not compare data bytes

Note 1: These bits can only be modified in Configuration mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRP<	<7:0>			
bit 31							bit 2
R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0
			TSEG	1<7:0>			
bit 23							bit 1
U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
—				TSEG2<6:0>			
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
_				SJW<6:0>			
bit 7							bit
Legend:							
R = Readable		W = Writable		U = Unimplen			
Legend: R = Readable -n = Value at		W = Writable '1' = Bit is set		U = Unimplen '0' = Bit is clea		ad as '0' x = Bit is unk	nown
R = Readable	POR BRP<7:0>: B		caler bits	•			nown
R = Readable -n = Value at	POR BRP<7:0>: B	'1' = Bit is set aud Rate Presc = TQ = 256/Fsys	caler bits	•			nown
R = Readable -n = Value at	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0>	'1' = Bit is set aud Rate Presc = TQ = 256/Fsys = TQ = 1/Fsys	caler bits s t 1 bits (Propa	•	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 	'1' = Bit is set aud Rate Preso = TQ = 256/Fsys = TQ = 1/Fsys : Time Segmen = Length is 256	caler bits s t 1 bits (Propa x Tq	ʻ0' = Bit is clea	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 0000 0000	'1' = Bit is set aud Rate Preso = $TQ = 256/Fsys$ = $TQ = 1/Fsys$: Time Segmen = Length is 256 = Length is 1 x	caler bits s t 1 bits (Propa x TQ TQ	ʻ0' = Bit is clea	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24 bit 23-16	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 0000 0000 Unimplemen TSEG2<6:0>	'1' = Bit is set aud Rate Preso = $TQ = 256/Fsys$: Time Segmen = Length is 256 = Length is 1 x ted: Read as '0 : Time Segmen	caler bits s t 1 bits (Propa x TQ TQ o' t 2 bits (Phase	ʻ0' = Bit is clea	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24 bit 23-16 bit 15	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 0000 0000 Unimplemen TSEG2<6:0> 111 1111 = 	'1' = Bit is set aud Rate Prese = TQ = 256/Fsys = TQ = 1/Fsys : Time Segmen = Length is 256 = Length is 1 x ted: Read as '0 : Time Segmen Length is 128 :	caler bits s t 1 bits (Propa x TQ TQ)' t 2 bits (Phase x TQ	ʻ0' = Bit is clea	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24 bit 23-16 bit 15 bit 14-8	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 0000 0000 Unimplemen TSEG2<6:0> 111 1111 = 000 0000 =	'1' = Bit is set aud Rate Preso = TQ = 256/Fsys = TQ = 1/Fsys : Time Segmen = Length is 256 = Length is 1 x ted: Read as '0 : Time Segmen Length is 128 : Length is 1 x To	caler bits s t 1 bits (Propa x TQ TQ y t 2 bits (Phase x TQ	ʻ0' = Bit is clea	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24 bit 23-16 bit 15	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 0000 0000 Unimplemen TSEG2<6:0> 111 1111 = 000 0000 = Unimplemen SJW<6:0>: S	'1' = Bit is set aud Rate Prese = $TQ = 256/Fsys$ = $TQ = 1/Fsys$: Time Segmen = Length is 256 = Length is 1 x ted: Read as '0 Length is 1 x To ted: Read as '0 ynchronization	caler bits s t 1 bits (Propa x TQ TQ)' t 2 bits (Phase x TQ Q)' Jump Width b	'0' = Bit is clea	ared	x = Bit is unk	nown
R = Readable -n = Value at bit 31-24 bit 23-16 bit 15 bit 15 bit 14-8 bit 7	POR BRP<7:0>: B 1111 1111 = 0000 0000 = TSEG1<7:0> 1111 1111 = 0000 0000 Unimplemen TSEG2<6:0> 111 1111 = 000 0000 = Unimplemen SJW<6:0>: S 111 1111 = 	 '1' = Bit is set aud Rate Presc TQ = 256/Fsys TQ = 1/Fsys Time Segmen Length is 256 Length is 1 x ted: Read as '0' Length is 1 x To ted: Read as '0' 	caler bits s t 1 bits (Propa x TQ TQ)' t 2 bits (Phase x TQ Q 2 Jump Width b a TQ	'0' = Bit is clea	ared	x = Bit is unk	nown

REGISTER 3-7: CINBTCFG – NOMINAL BIT TIME CONFIGURATION REGISTER

REGISTER 3-8: CIDBTCFG – DATA BIT TIME CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRP<	:7:0>			
bit 31							bit 24
U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
	—	—			TSEG1<4:0>		1:140
bit 23							bit 16
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1
_	—	—	—		TSEG	2<3:0>	
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1
_	_	_	_		SJW	<3:0>	
bit 7	·	÷	·	·			bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
R = Readabl -n = Value at		W = Writable '1' = Bit is set		U = Unimpler '0' = Bit is cle		d as '0' x = Bit is unki	nown
				-			nown
	BRP<7:0>: B	'1' = Bit is set	caler bits	-			nown
-n = Value at	BRP<7:0>: B	'1' = Bit is set	caler bits	-			nown
-n = Value at	BRP<7:0>: B	'1' = Bit is set	caler bits	-			nown
-n = Value at	BRP<7:0>: B 1111 1111 : 0000 0000 :	'1' = Bit is set aud Rate Pres = To = 256/Fsy	caler bits 's	-			nown
-n = Value at bit 31-24	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0>	'1' = Bit is set aud Rate Pres = TQ = 256/Fsy = TQ = 1/Fsys hted: Read as ' : Time Segmer	caler bits rs o' at 1 bits (Propa	'0' = Bit is cle	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0>	'1' = Bit is set aud Rate Pres = TQ = 256/Fsy = TQ = 1/Fsys hted: Read as '	caler bits rs o' at 1 bits (Propa	'0' = Bit is cle	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0> 1 1111 = Le 	'1' = Bit is set aud Rate Press = TQ = 256/Fsy = TQ = 1/Fsys ated: Read as ' : Time Segmer ngth is 32 x TQ	caler bits rs o' at 1 bits (Propa	'0' = Bit is cle	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0> 1 1111 = Le 0 0000 = Le	'1' = Bit is set aud Rate Pres = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ited: Read as ' : Time Segmer ngth is $32 \times T_Q$ ngth is 1 x TQ	caler bits 's 0' nt 1 bits (Propa	'0' = Bit is cle	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21 bit 20-16	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0> 1 1111 = Le 0 0000 = Le Unimplemen	'1' = Bit is set aud Rate Pres = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ited: Read as ' : Time Segmer ngth is 32 x T_Q ngth is 1 x T_Q ited: Read as '	caler bits 's 0' ht 1 bits (Propa	ʻ0' = Bit is cle gation Segmen	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21 bit 20-16 bit 15-12	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0> 1 1111 = Le 0 0000 = Le Unimplemen	'1' = Bit is set aud Rate Pres = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ited: Read as 'i : Time Segmer ngth is 32 x TQ ngth is 1 x TQ ited: Read as 'i : Time Segmer	caler bits 's 0' ht 1 bits (Propa	ʻ0' = Bit is cle gation Segmen	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21 bit 20-16 bit 15-12	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplemen TSEG1<4:0> 1 1111 = Le 0 0000 = Le Unimplemen TSEG2<3:0>	'1' = Bit is set aud Rate Pres = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ited: Read as '1 : Time Segmer ngth is 32 x TQ ngth is 1 x TQ ited: Read as '1 : Time Segmer th is 16 x TQ	caler bits 's 0' ht 1 bits (Propa	ʻ0' = Bit is cle gation Segmen	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21 bit 20-16 bit 15-12	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplement TSEG1<4:0> 1 1111 = Le 0 0000 = Le Unimplement TSEG2<3:0> 1111 = Leng 0000 = Leng	'1' = Bit is set aud Rate Pres = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ited: Read as '1 : Time Segmer ngth is 32 x TQ ngth is 1 x TQ ited: Read as '1 : Time Segmer th is 16 x TQ	caler bits 's 0' nt 1 bits (Propa 0' nt 2 bits (Phase	ʻ0' = Bit is cle gation Segmen	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21 bit 20-16 bit 15-12 bit 11-8	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplement TSEG1<4:0> 1 1111 = Le 0 0000 = Le Unimplement TSEG2<3:0> 1111 = Leng 0000 = Leng Unimplement SJW<3:0>: S	'1' = Bit is set aud Rate Press = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ited: Read as 'i : Time Segmer ngth is $32 \times T_Q$ ngth is $1 \times T_Q$ ited: Read as 'i th is $16 \times T_Q$ th is $1 \times T_Q$ ited: Read as 'i Synchronization	caler bits 's o' nt 1 bits (Propa o' nt 2 bits (Phase	'0' = Bit is cle gation Segmen	ared	x = Bit is unki	nown
-n = Value at bit 31-24 bit 23-21 bit 20-16 bit 15-12 bit 11-8 bit 7-4	BRP<7:0>: B 1111 1111 : 0000 0000 : Unimplement TSEG1<4:0> 1 1111 = Le 0 0000 = Le Unimplement TSEG2<3:0> 1111 = Leng 0000 = Leng Unimplement	'1' = Bit is set aud Rate Prese = $T_Q = 256/Fsy$ = $T_Q = 1/Fsys$ ated: Read as '1' : Time Segmer ngth is 1 x T_Q ngth is 1 x T_Q nted: Read as '1' this 16 x T_Q th is 1 x T_Q ated: Read as '1' Synchronization th is 16 x T_Q	caler bits 's o' nt 1 bits (Propa o' nt 2 bits (Phase	'0' = Bit is cle gation Segmen	ared	x = Bit is unki	nown

Note 1: This register can only be modified in Configuration mode.

REGISTER 3-	9. CIIDC		I IER DELA	COMPENS	ATION REG	IJIER			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_	_	_	_	—	—	EDGFLTEN	SID11EN		
bit 31							bit 24		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0		
	_	—	—		—	TDCMO	D<1:0>		
bit 23							bit 16		
	DAMO	DAMA	D 44/ 4	DAMA	DAMA		D 444 O		
U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
				TDCO<6:0>			bit		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				-	/<5:0>				
bit 7							bit (
Legend:									
R = Readable b	bit	W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unkn			own		
bit 31-26 bit 25 bit 24	EDGFLTEN : 1 = Edge Filt 0 = Edge Filt	ering enabled, ering disabled	iltering during according to I	Bus Integratior SO11898-1:20 ⁻ ase Format Me	15				
	1 = RRS is u	sed as SID11 i	n CAN FD bas		ages: SID<11:	0> = {SID<10:0>	•, SID11}		
bit 23-18	Unimplemen	ted: Read as '	0'						
bit 17-16	10-11 = Au	to; measure de Don't measure	elay and add T			y Sample Point	(SSP)		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14-8	Two's comple 011 1111 = 000 0000 = 	ment; offset ca 63 x TSYSCL 0 x TSYSCLK	in be positive, K	ation Offset bits zero, or negati		ample Point (SS	SP)		
h# 7.0		-64 x TSYSC							
bit 7-6 bit 5-0	TDCV<5:0>:	t ed : Read as ' Transmitter De 63 x TSYSCLk	lay Compensa	ition Value bits;	Secondary Sa	ample Point (SS	P)		

REGISTER 3-9: CITDC – TRANSMITTER DELAY COMPENSATION REGISTER

Note 1: This register can only be modified in Configuration mode.

REGISTER 3-10: CITBC – TIME BASE COUNTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	31:24>			-
bit 31							bit 24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	23:16>			
bit 23							bit 16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC	<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 31-0 **TBC<31:0>**: Time Base Counter bits

This is a free running timer that increments every TBCPRE clocks when TBCEN is set

Note 1: The TBC will be stopped and reset when TBCEN = 0.

2: The TBC prescaler count will be reset on any write to CiTBC (CiTSCON.TBCPRE will be unaffected).

REGISTER	3-11: CiTSC	ON – TIME S	TAMP CONT	ROL REGIS	TER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—		—
bit 31							bit 24
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_		_	_	TSRES	TSEOF	TBCEN
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_		—	—		TBCPF	RE<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBCPR	E<7:0>			
bit 7							bit 0
Legend:							
R = Readable		W = Writable			mented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 31-19	Unimplemen	ted: Read as 'o)'				
bit 18	1 = at sample	Stamp res bit point of the bit point of SOF	following the				
bit 17	TSEOF: Time 1 = Time Stal - RX no e - TX no e 0 = Time Stal - Classica	Stamp EOF bi mp when frame error until last b error until the er mp at "beginnir al Frame: at sau ne: see TSRES	t e is taken valid out one bit of E nd of EOF ng" of Frame: mple point of S	OF			
bit 16	TBCEN : Time 1 = Enable T 0 = Stop and	-	Enable bit				
bit 15-10	•	ted: Read as 'd)'				
bit 9-0		>: Time Base (increments eve					
	 0 = TBC incre	ements every 1	clock				

REGISTER 3-11: CITSCON – TIME STAMP CONTROL REGISTER

REGISTER 3-12: CiVEC – INTERRUPT CODE REGISTER

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
			R	XCODE<6:0>(1)		
bit 31							bit 24
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_			T	XCODE<6:0>(1)		
oit 23							bit 16
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			FILHIT<4:0> ⁽¹⁾)	-
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
		11-0		CODE<6:0>(1)		11-0	11-0
bit 7				0002 0.0			bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	1000000 = N 0100000-011 0011111 = F 0000010 = F 0000001 = F	11111 = Rese lo interrupt 1111 = Reserve IFO 31 Interrupt IFO 2 Interrupt IFO 1 Interrupt Reserved. FIFO	d ot (RFIF<31> s (RFIF<2> set) (RFIF<1> set)				
bit 23	Unimplemer	ted: Read as '	כי				
bit 22-16	1000001-11 1000000 = N 0100000-01	.11111 = Rese	rved				
		IFO 31 Interrup					
		IFO 1 Interrupt					
bit 15-13		ted: Read as '					
bit 12-8	FILHIT<4:0> 11111 = Filte 11110 = Filte		ber bits ⁽¹⁾				
	 00001 = Filte 00000 = Filte						

Note 1: If multiple interrupts are pending, the interrupt with the highest number will be indicated.

REGISTER 3-12: CIVEC – INTERRUPT CODE REGISTER (CONTINUED)

- bit 7 Unimplemented: Read as '0'
- bit 6-0 **ICODE[6:0]**: Interrupt Flag Code bits⁽¹⁾
 - 1001011-1111111 = Reserved
 - 1001010 = Transmit Attempt Interrupt (any bit in CiTXATIF set)
 - 1001001 = Transmit Event FIFO Interrupt (any bit in CiTEFIF set)
 - 1001000 = Invalid Message Occurred (IVMIF/IE)
 - 1000111 = Operation Mode Change Occurred (MODIF/IE)
 - 1000110 = TBC Overflow (TBCIF/IE)
 - 1000101 = RX/TX MAB Overflow/Underflow (RX: message received before previous message was saved to memory; TX: can't feed TX MAB fast enough to transmit consistent data.) (SERRIF/IE)
 - 1000100 = Address Error Interrupt (illegal FIFO address presented to system) (SERRIF/IE)
 - 1000011 = Receive FIFO Overflow Interrupt (any bit in CiRXOVIF set)
 - 1000010 = Wake-up interrupt (WAKIF/WAKIE)
 - 1000001 = Error Interrupt (CERRIF/IE)
 - 1000000 = No interrupt
 - 0100000-0111111 = Reserved
 - 0011111 = FIFO 31 Interrupt (TFIF<31> or RFIF<31> set)

... 0000001 = FIFO 1 Interrupt (TFIF<1> or RFIF<1> set) 0000000 = TXQ Interrupt (TFIF<0> set)

Note 1: If multiple interrupts are pending, the interrupt with the highest number will be indicated.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IVMIE	WAKIE	CERRIE	SERRIE	RXOVIE	TXATIE	SPICRCIE	ECCIE
bit 31	W and E	OERITE	OLIVIE	TOTOVIE	170 (IIE	OFICIAL	bit 24
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_		TEFIE	MODIE	TBCIE	RXIE	TXIE
bit 23			I				bit 16
HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	R-0	R-0
IVMIF ⁽¹⁾	WAKIF ⁽¹⁾	CERRIF ⁽¹⁾	SERRIF ⁽¹⁾	RXOVIF	TXATIF	SPICRCIF	ECCIF
bit 15	·						bit 8
U-0	U-0	U-0	R-0	HS/C-0	HS/C-0	R-0	R-0
—	—		TEFIF	MODIF ⁽¹⁾	TBCIF ⁽¹⁾	RXIF	TXIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 28 bit 27 bit 26 bit 25 bit 24 bit 23-21	RXOVIE: Rec TXATIE: Tran SPICRCIE: SI ECCIE: ECC	tem Error Interr eive FIFO Ove smit Attempt In PI CRC Error In Error Interrupt ted: Read as '0	rflow Interrupt terrupt Enable nterrupt Enable Enable bit	Enable bit bit			
bit 20	TEFIE: Transi	mit Event FIFO	Interrupt Enat	ole bit			
bit 19	MODIE: Mode	e Change Interr	upt Enable bit				
bit 18	TBCIE: Time	Base Counter I	nterrupt Enabl	e bit			
bit 17	RXIE: Receive	e FIFO Interrup	t Enable bit				
bit 16	TXIE: Transm	it FIFO Interrup	ot Enable bit				
bit 15		Message Inter)			
bit 14	WAKIF: Bus \	Nake Up Interre	upt Flag bit ⁽¹⁾				
bit 13	CERRIF: CAN	N Bus Error Inte	errupt Flag bit ⁽	1)			
bit 12	1 = A system	tem Error Interr error occurred m error occurre					
bit 11	1 = Receive I	eive Object Ov FIFO overflow (ve FIFO overflo	occurred	•			
bit 10	TXATIF: Tran	smit Attempt In	terrupt Flag bit	t			
Note 1: Flag	gs are set by ha	ardware and cle	ared by applic	ation.			

REGISTER 3-13: CIINT – INTERRUPT REGISTER

Note 1: Flags are set by hardware and cleared by application.

REGISTER 3-13: CIINT – INTERRUPT REGISTER (CONTINUED)

bit 9	SPICRCIF: SPI CRC Error Interrupt Flag bit
bit 8	ECCIF: ECC Error Interrupt Flag bit
bit 7-5	Unimplemented: Read as '0'
bit 4	TEFIF : Transmit Event FIFO Interrupt Flag bit 1 = TEF interrupt pending 0 = No TEF interrupts pending
bit 3	 MODIF: Operation Mode Change Interrupt Flag bit⁽¹⁾ 1 = Operation mode change occurred (OPMOD has changed) 0 = No mode change occurred
bit 2	TBCIF : Time Base Counter Overflow Interrupt Flag bit ⁽¹⁾ 1 = TBC has overflowed 0 = TBC didn't overflow
bit 1	RXIF : Receive FIFO Interrupt Flag bit 1 = Receive FIFO interrupt pending 0 = No receive FIFO interrupts pending
bit 0	TXIF : Transmit FIFO Interrupt Flag bit 1 = Transmit FIFO interrupt pending 0 = No transmit FIFO interrupts pending

Note 1: Flags are set by hardware and cleared by application.

REGISTER 3-14: CIRXIF – RECEIVE INTERRUPT STATUS REGISTER

-n = Value at PC	ĸ	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
			W = Writable bit		U = Unimplemented bit, re			
Legend:								
bit 7							bit (
			RFIF<7:1>					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0	
bit 15							bit 8	
			RFIF	<15:8>				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
bit 23							bit 16	
			RFIF∙	<23:16>				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
bit 31							bit 24	
			RFIF ∙	<31:24>				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	

0 = No enabled receive FIFO interrupts are pending

bit 0 Unimplemented: Read as '0'

Note 1: RFIF = 'or' of enabled RXFIFO flags; flags will be cleared when the condition of the FIFO terminates.

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			RFOVI	F<31:24>				
bit 31							bit 24	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			RFOVI	F<23:16>				
bit 23							bit 16	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			RFOV	IF<15:8>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0	
		F	RFOVIF<7:1	>			—	
bit 7							bit (
Legend:								
R = Readable bit W = Writat		W = Writable I	oit	t U = Unimplemented bit,		read as '0'		
-n = Value at POR '1' = Bit i		'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown	

REGISTER 3-15: CIRXOVIF – RECEIVE OVERFLOW INTERRUPT STATUS REGISTER

1 = Interrupt is pending

0 = Interrupt not pending

bit 0 Unimplemented: Read as '0'

Note 1: Flags need to be cleared in FIFO register

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TFIF∢	<31:24>			
						bit 24
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TFIF<2	23:16> ⁽¹⁾			
						bit 16
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TFIF<	15:8> ^(1)			
						bit 8
R-0	R-0			R-0	R-0	R-0
		TFIF<	<7:0> ⁽¹⁾			
						bit C
oit	W = Writable bit		U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unkno			nown	
	R-0 R-0	R-0 R-0 R-0 R-0 R-0 R-0 wit W = Writable bit	R-0 R-0 R-0 R-0 R-0 TFIF<2	TFIF<31:24> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 TFIF<15:8> ⁽¹⁾ TFIF<7:0> ⁽¹⁾ wit W = Writable bit U = Unimpler	TFIF<31:24> R-0 R-0 R-0 R-0 R-0 TFIF<15:8> ⁽¹⁾ TFIF<7:0> ⁽¹⁾ U = Unimplemented bit, respectively.	$\frac{\text{TFIF<31:24>}}{\text{R-0} \text{R-0} \text{R-0} \text{R-0} \text{R-0} \\ \text{TFIF<23:16>}^{(1)}}$ $\frac{\text{R-0} \text{R-0} \text{R-0} \text{R-0} \text{R-0} \\ \text{TFIF<15:8>}^{(1)}}$ $\frac{\text{R-0} \text{R-0} \text{R-0} \text{R-0} \text{R-0} \\ \text{TFIF<7:0>}^{(1)}}$ $\text{Dit } W = \text{Writable bit} \qquad U = \text{Unimplemented bit, read as '0'}$

TFIF<31:0>: Transmit FIFO/TXQ ⁽²⁾ Interrupt Pending bits⁽¹⁾ 1 = One or more enabled transmit FIFO/TXQ interrupts are pending bit 31-0

0 = No enabled transmit FIFO/TXQ interrupt are pending

Note 1: TFIF = 'or' of the enabled TXFIFO flags; flags will be cleared when the condition of the FIFO terminates.

2: TFIF<0> is for the Transmit Queue.

R-0	R-0	R-0	R-0	R-0 <31:24> ⁽¹⁾	R-0	R-0	R-0	
			IFALLES	\$31.24>(*)				
bit 31							bit 2	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TFATIF	<23:16> ⁽¹⁾				
bit 23							bit 1	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TFATIF	<15:8> ⁽¹⁾				
bit 15							bit	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TFATIF	<7:0> ⁽¹⁾				
bit 7							bit	
Legend:								
R = Readable bit W = Writable bit			U = Unimpler	nented bit, re	ead as '0'			
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

REGISTER 3-17: CITXATIF – TRANSMIT ATTEMPT INTERRUPT STATUS REGISTER

bit 31-0 **TFATIF<31:0>**: Transmit FIFO/TXQ ⁽²⁾ Attempt Interrupt Pending bits⁽¹⁾ 1 = Interrupt is pending 0 = Interrupt not pending

Note 1: Flags need to be cleared in FIFO register

2: TFATIF<0> is for the Transmit Queue.

REGISTER 3-18: CITXREQ – TRANSMIT REQUEST REGISTER

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXREQ	<31:24>			
bit 31							bit 24
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXREQ	<23:16>			
bit 23							bit 16
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXREG)<15:8>			
bit 15							bit 8
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXRE	Q<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
bit 31-1	TXEN= 1 (O Setting this t The bit will a This bit can	1>: Message Se bject configured bit to '1' requests utomatically clea NOT be used f bject configured no effect	as a Transmi s sending a m ar when the m or aborting a	t Object) essage. lessage(s) quet l transmission .		ct is (are) succ	essfully sent.
bit 0	Setting this t The bit will a	Transmit Queue bit to '1' requests utomatically clea	s sending a m ar when the m	essage. Iessage(s) quei	ued in the obje	ct is (are) succ	essfully sent

This bit can NOT be used for aborting a transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—		—	—	_			
bit 31							bit 24			
U-0	U-0	R-1	R-0	R-0	R-0	R-0	R-0			
_	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN			
bit 23							bit 16			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			TEC<	7:0>						
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			REC<	7:0>						
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 31-22	•	ted: Read as '0								
bit 21		nitter in Bus Of on mode, TXB0			not on the bus.					
bit 20	TXBP: Transn	nitter in Error P	assive State b	it (TEC > 127)						
bit 19	RXBP: Receiv	ver in Error Pas	sive State bit (REC > 127)						
bit 18	TXWARN: Tra	ansmitter in Erro	or Warning Sta	te bit (128 > T	EC > 95)					
bit 17	RXWARN: Re	RXWARN : Receiver in Error Warning State bit (128 > REC > 95)								

REGISTER 3-19: CITREC – TRANSMIT/RECEIVE ERROR COUNT REGISTER

bit 15-8 **TEC<7:0>**: Transmit Error Counter bits

EWARN: Transmitter or Receiver is in Error Warning State bit

bit 16

bit 7-0 **REC<7:0>**: Receive Error Counter bits

REGISTER 3-20: CiBDIAG0 – BUS DIAGNOSTIC REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DTERRO	CNT<7:0>				
bit 31							bit 24	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DRERRO	CNT<7:0>				
bit 23							bit 16	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			NTERRO	CNT<7:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			NRERR	CNT<7:0>				
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, re		ad as '0'		
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 31-24	DTERRCN	Γ<7:0> : Data Bit ∣	Rate Transmi	t Error Counter	bits			
bit 23-16	DRERRCN	T<7:0> : Data Bit	Rate Receive	e Error Counter	bits			
bit 15-8	NTERRONT	C<7.0> Nominal	Bit Rate Tran	smit Error Coun	ter hits			

bit 15-8 NTERRCNT<7:0>: Nominal Bit Rate Transmit Error Counter bits

bit 7-0 NRERRCNT<7:0>: Nominal Bit Rate Receive Error Counter bits

R/W-0 DLCMM bit 31 R/W-0 TXBOERR bit 23 R/W-0	R/W-0 ESI U-0	R/W-0 DCRCERR	R/W-0 DSTUFERR	R/W-0 DFORMERR	U-0	R/W-0 DBIT1ERR	R/W-0 DBIT0ERR
bit 31 R/W-0 TXBOERR bit 23		DCRCERR	DSTUFERR	DFORMERR		DBIT1ERR	DBIT0ERR
R/W-0 TXBOERR bit 23	U-0						
TXBOERR bit 23	U-0						bit 24
TXBOERR bit 23	U-0	_					
bit 23		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	NCRCERR	NSTUFERR	NFORMERR	NACKERR	NBIT1ERR	NBIT0ERR
R/W-0							bit 16
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSGCN	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSGC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b		W = Writable	bit	U = Unimplem			
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
	During a trans	Mismatch bit mission or rece of a received C		cified DLC is lar	rger than the F	PLSIZE of the F	IFO element.
	-	ame as for nor	-	-			
		Same as for no					
		Same as for ne					
		ted: Read as '0		(,			
	-	ame as for nor		ee below).			
		ame as for nor					
		evice went to b		,			
		ted: Read as '0		,			
bit 21	NCRCERR: 1	he CRC check	sum of a rec	ceived message culated from the			f an incoming
bit 20	0	More than 5 ed		sequence have			ved message
			part of a receiv	ved frame has tl	he wrong form	at.	
			-	acknowledged.	-		
bit 17	NBIT1ERR: [During the trans	smission of a	message (with bit of logical va	the exception		
	flag), the dev	-	send a domin	essage (or ackno ant level (data	-		-
	EFMSGCNT<	15.0. Error Er					

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSIZE<4:0> ⁽¹⁾		
bit 31		·					bit 24
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
						_	
bit 23							bit 1
U-0	U-0	U-0	U-0	U-0	S/HC-1	U-0	S/HC-0
					FRESET		UINC
bit 15					TREBET		bit
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	TEFTSEN ⁽¹⁾		TEFOVIE	TEFFIE	TEFHIE	TEFNEIE
 bit 7		TEFISEN /		TEFOVIE			bit (
Legend:							
R = Readable	e bit	W = Writable	bit		nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
hit 31_29	Unimpleme	nted. Read as '	n'				
	-	nted: Read as '					
bit 31-29 bit 28-24	FSIZE<4:0>	: FIFO Size bits	(1)				
	FSIZE<4:0> 0_0000 = F 0_0001 = F	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag	(1) le deep les deep				
	FSIZE<4:0> 0_0000 = F 0_0001 = F	: FIFO Size bits ⁽ IFO is 1 Messag	(1) le deep les deep				
	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag	(1) le deep les deep les deep				
bit 28-24	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messag	(1) le deep les deep les deep lges deep				
bit 28-24 bit 23-11	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messa nted: Read as '((1) le deep les deep les deep lges deep				
	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messa nted: Read as '(FO Reset bit	(1) le deep les deep les deep lges deep 0'	ared by bardwa	are when EIEO	was reset. Th	ne user shoul
bit 28-24 bit 23-11	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for	FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messa nted: Read as '(FO Reset bit ill be reset when this bit to clear b	(1) le deep les deep les deep lges deep D' n bit is set, cle		are when FIFO	was reset. Th	ne user shoul
bit 28-24 bit 23-11 bit 10	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for 0 = No effect	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messag nted: Read as '(FO Reset bit ill be reset when this bit to clear b ct	(1) le deep les deep les deep o' bit is set, cle pefore taking a		are when FIFO	was reset. Th	ie user shoul
bit 28-24 bit 23-11 bit 10 bit 9	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for 0 = No effect Unimpleme	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messag nted: Read as '(FO Reset bit ill be reset when this bit to clear b ct nted: Read as '((1) le deep les deep les deep o' bit is set, cle pefore taking a		are when FIFO	was reset. Th	ne user shoul
bit 28-24 bit 23-11 bit 10 bit 9	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for 0 = No effec Unimpleme UINC: Increm	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messag nted: Read as '(FO Reset bit ill be reset when this bit to clear b ct nted: Read as '((1) le deep les deep lges deep D' bit is set, cle pefore taking a	ny action.		was reset. Tr	ie user shoul
bit 28-24 bit 23-11 bit 10	FSIZE<4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET : FII 1 = FIFO w wait for 0 = No effect Unimpleme UINC : Increase When this bit	FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messa nted: Read as '(FO Reset bit ill be reset when this bit to clear b ct nted: Read as '(ment Tail bit	(1) le deep les deep lges deep 0' n bit is set, cle pefore taking a 0' D tail will increi	ny action.		was reset. Th	ie user shoul
bit 28-24 bit 23-11 bit 10 bit 9 bit 8	FSIZE<4:0> 0_0000 = F 0_001 = F 0_010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for 0 = No effect Unimpleme UNINC: Increase When this bit Unimpleme	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag nted: Read as '(FO Reset bit ill be reset when this bit to clear b ct nted: Read as '(ment Tail bit it is set, the FIFC	(1) le deep les deep lges deep 0' bit is set, cle pefore taking a 0' D tail will increi	ny action. nent by a single	e message.	was reset. Th	e user shoul
bit 28-24 bit 23-11 bit 10 bit 9 bit 8 bit 7-6	FSIZE<4:0> 0_0000 = F 0_0011 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for 0 = No effect UNIMPLEME UINC: Increa When this bit Unimpleme TEFTSEN: 1 1 = Time St	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag nted: Read as '(FO Reset bit ill be reset when this bit to clear b ct nted: Read as '(ment Tail bit it is set, the FIFC nted: Read as '((1) le deep les deep les deep o' bit is set, cle pefore taking a o' D tail will increi o' FIFO Time Star EF	ny action. nent by a single	e message.	was reset. Th	e user shoul
bit 28-24 bit 23-11 bit 10 bit 9 bit 8 bit 7-6 bit 5	FSIZE <4:0> 0_0000 = F 0_0001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET : FII 1 = FIFO w wait for 0 = No effect Unimpleme UINC : Increase When this bit Unimpleme TEFTSEN : T 1 = Time St 0 = Don't Ti	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messag nted: Read as '(FO Reset bit ill be reset when this bit to clear b this b	 (1) le deep les deep les deep lges deep o' bit is set, cle before taking a o' D tail will increa c' FIFO Time Starter EF ts in TEF 	ny action. nent by a single	e message.	was reset. Th	ie user shoul
bit 28-24 bit 23-11 bit 10 bit 9 bit 8 bit 7-6	FSIZE<4:0> 0_0000 = F 0_001 = F 0_0010 = F 1_1111 = F Unimpleme FRESET: FII 1 = FIFO w wait for 0 = No effect Unimpleme UINC: Increation When this bit Unimpleme TEFTSEN: 1 1 = Time St 0 = Don't Tit Unimpleme TEFOVIE: T 1 = Interrup	: FIFO Size bits ⁽ IFO is 1 Messag IFO is 2 Messag IFO is 3 Messag IFO is 32 Messa nted: Read as '(FO Reset bit ill be reset when this bit to clear b this bit to clear b ct nted: Read as '(nted:	 (1) (e) deep (e) deep (e) deep (f) deep	ny action. ment by a single mp Enable bit ^{(1}	e message.)	was reset. Th	ie user shoul

Note 1: These bits can only be modified in Configuration mode.

REGISTER 3-22: CITEFCON – TRANSMIT EVENT FIFO CONTROL REGISTER (CONTINUED)

bit 1	TEFHIE : Transmit Event FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 0	TEFNEIE : Transmit Event FIFO Not Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO not empty

0 = Interrupt disabled for FIFO not empty

Note 1: These bits can only be modified in Configuration mode.

REGISTER 3	B-23: CiTEF	STA – TRAN	SMIT EVENT	FIFO STAT	US REGISTEI	R	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	_	—
bit 31							bit 24
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
 bit 23	_			_	_	—	 bit 16
511 20							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		_			
bit 15							bit 8
U-0	U-0	U-0	U-0	HS/C-0	R-0	R-0	R-0
— • • • 7	—	—		TEFOVIF	TEFFIF ⁽¹⁾	TEFHIF ⁽¹⁾	TEFNEIF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 31-4	Unimplemer	nted: Read as '	0'				
bit 3	-	ansmit Event F		nterrupt Flag b	bit		
		vevent has occ					
bit 2		low event occu		t Elog bit(1)			
DIL Z	1 = FIFO is f	nsmit Event FIF		t Flag bit			
	0 = FIFO is r						
bit 1	TEFHIF: Trar	nsmit Event FIF	O Half Full Inte	errupt Flag bit ⁽	1)		
	1 = FIFO is 2						
	0 = FIFO is <	< nait tull					

bit 0	TEFNEIF : Transmit Event FIFO Not Empty Interrupt Flag bit ⁽¹⁾
	1 = FIFO is not empty, contains at least one message

0 = FIFO is empty

Note 1: This bit is read only and reflects the status of the FIFO.

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<31:24>			
bit 31							bit 24
D	D		Du			D	
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<23:16>			
bit 23							bit 16
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFU	A<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFU	A<7:0>			
bit 7							bit (
Legend:							
-		W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'1' = Bit is set	0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 3-24: CITEFUA – TRANSMIT EVENT FIFO USER ADDRESS REGISTER

bit 31-0 **TEFUA<31:0>:** Transmit Event FIFO User Address bits A read of this register will return the address where the next object is to be read (FIFO tail).

Note 1: This register is not guaranteed to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-25: C	iTXQCON – TRANSMIT QUEUE CONTROL REGISTER
------------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PLSIZE<2:0>(FSIZE<4:0>(1))		
bit 31							bit 2
U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0		R/νν-1 Γ<1:0>	R/W-U	R/W-U	TXPRI<4:0>	R/W-U	R/W-U
 bit 23	IAA	1<1.0>			TAPRIS4.02		hit 1
DIL 23							bit 1
U-0	U-0	U-0	U-0	U-0	S/HC-1	R/W/HC-0	S/HC-0
_	_		_		FRESET ⁽³⁾	TXREQ ⁽²⁾	UINC
bit 15						1 1	bit
R-1	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
TXEN			TXATIE	_	TXQEIE		TXQNIE
bit 7			I NOTILE		Indelle		bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkn	own
	100 = 24 dat 101 = 32 dat 110 = 48 dat 111 = 64 dat	a bytes a bytes					
bit 28-24	0_0000 = FI 0_0001 = FI	FIFO Size bits FO is 1 Messag FO is 2 Messag FO is 3 Messag	ge deep ges deep				
		FO is 32 Messa	•				
bit 23	-	ted: Read as '					
bit 22-21	This feature i 00 = Disable 01 = Three re 10 = Unlimite	Retransmission s enabled whe retransmission etransmission a ed number of re ed number of re	n CiCON.RTX/ attempts attempts etransmission a	attempts			
bit 20-16	TXPRI<4:0>:	Message Trar vest Message F	nsmit Priority bi	•			
	 11111 = Hig	hest Message	Priority				
Note 1: The	nese bits can on	y be modified i	n Configuration	n mode.			
	nis bit is updated RESET is set wh						

REGISTER 3-25: CITXQCON – TRANSMIT QUEUE CONTROL REGISTER (CONTINUED)

bit 15-11	Unimplemented: Read as '0'
bit 10	 FRESET: FIFO Reset bit⁽³⁾ 1 = FIFO will be reset when bit is set; cleared by hardware when FIFO was reset. User should wait until this bit is clear before taking any action. 0 = No effect
bit 9	 TXREQ: Message Send Request bit⁽²⁾ 1 = Requests sending a message; the bit will automatically clear when all the messages queued in the TXQ are successfully sent. 0 = Clearing the bit to '0' while set ('1') will request a message abort.
bit 8	UINC : Increment Head bit When this bit is set, the FIFO head will increment by a single message.
bit 7	TXEN : TX Enable 1 = Transmit Message Queue. This bit always reads as '1'.
bit 6-5	Unimplemented: Read as '0'
bit 4	TXATIE : Transmit Attempts Exhausted Interrupt Enable bit 1 = Enable interrupt 0 = Disable interrupt
bit 3	Unimplemented: Read as '0'
bit 2	TXQEIE : Transmit Queue Empty Interrupt Enable bit 1 = Interrupt enabled for TXQ empty 0 = Interrupt disabled for TXQ empty
bit 1	Unimplemented: Read as '0'
bit 0	TXQNIE : Transmit Queue Not Full Interrupt Enable bit 1 = Interrupt enabled for TXQ not full 0 = Interrupt disabled for TXQ not full
Note 1:	These bits can only be modified in Configuration mode.
2:	This bit is updated when a message completes (or aborts) or when the FIFO is reset.

3: FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 3-26: CITXQSTA – TRANSMIT QUEUE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 31							bit 24
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_			_	
bit 23							bit 16
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	_	_			TXQCI<4:0>(1)		
bit 15							bit 8
HS/C-0	HS/C-0	HS/C-0	HS/C-0	U-0	R-1	U-0	R-1
TXABT ⁽²⁾⁽³⁾	TXLARB (2)(3)	TXERR ⁽²⁾⁽³⁾	TXATIF	-	TXQEIF	_	TXQNIF
bit 7							bit (
Logondi							
Legend: R = Readable I	bit	W = Writable b	.it	II – Unimplo	mented bit, read	1 ac '0'	
n = Value at P		'1' = Bit is set	Л	'0' = Bit is cle		x = Bit is unl	(00)//0
bit 12-8	A read of this	Transmit Queue register will retu	urn an index to		that the FIFO v	vill next atter	pt to transmit
bit 7	1 = Message	age Aborted Sta was aborted completed suce					
bit 6	TXLARB: Me 1 = Message	ssage Lost Arbi	tration Status while being se	ent			
bit 5	1 = A bus err	r Detected Durin or occurred whi or did not occur	le the messag	ge was being s			
bit 4	TXATIF : Tran 1 = Interrupt 0 = Interrupt	• •	xhausted Inte	errupt Pending	bit		
bit 3	-	ted: Read as '0	,				
bit 2	TXQEIF: Trar 1 = TXQ is e	nsmit Queue Em mpty	pty Interrupt	-	ronom itte-t		
hit 1		ot empty, at leas		queuea to be t	lansmitted		
bit 1 bit 0		ted: Read as '0		t Eloa bit			
bit 0	1 = TXQ is n 0 = TXQ is fu		r Fuil mierrup	i Flay Nil			
	QCI<4:0> gives	a zero-indexed					ges deep
	-					ine IXQ.	
		when TXREQ is	-				
3. This	hit is undated	When a mocean	10 complotoo	(or aborte) or v	vhen the TXO is	racet	

3: This bit is updated when a message completes (or aborts) or when the TXQ is reset.

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQUA	<31:24>			
bit 31							bit 2
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQUA	<23:16>			
bit 23							bit 1
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQU	A<15:8>			
bit 15							bit
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQU	IA<7:0>			
bit 7							bit
Legend:							
R = Readable bit W = Writable bit			U = Unimplen	nented bit, re	ead as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown	

REGISTER 3-27: CITXQUA – TRANSMIT QUEUE USER ADDRESS REGISTER

bit 31-0 **TXQUA<31:0>:** TXQ User Address bits A read of this register will return the address where the next message is to be written (TXQ head).

Note 1: This register is not guaranteed to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-28:	CIFIFOCONm – FIFO CONTROL REGISTER m, (m = 0 TO 31)
----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLSIZE<2:0>(1)				FSIZE<4:0>(1)			
bit 31							bit 2
	D 44/ 4	DAN/ 4	DANO	D111	DAVA	DAMA	D 444.0
U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TXA	<1:0>			TXPRI<4:0>		
bit 23							bit 1
U-0	U-0	U-0	U-0	U-0	S/HC-1	R/W/HC-0	S/HC-0
—			—		FRESET ⁽³⁾	TXREQ ⁽²⁾	UINC
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXEN ⁽¹⁾	RTREN	RXTSEN ⁽¹⁾	TXATIE	RXOVIE	TFERFFIE	TFHRFHIE	TFNRFNIE
bit 7							bit
Legend:							
R = Readable	bit	W = Writable b	nit	II – Unimple	mented bit, read	d as 'O'	
-n = Value at I		'1' = Bit is set	JIL	'0' = Bit is cle			2014/2
	PLSIZE<2:0 > 000 = 8 data	•: Payload Size bytes	bits ⁽¹⁾			x = Bit is unkı	
	PLSIZE<2:0> 000 = 8 data 001 = 12 data 010 = 16 data 011 = 20 data 100 = 24 data 101 = 32 data 110 = 48 data	Payload Size bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes	bits ⁽¹⁾				
bit 31-29	PLSIZE<2:0> 000 = 8 data 001 = 12 data 010 = 16 data 011 = 20 data 100 = 24 data 101 = 32 data 110 = 48 data 111 = 64 data	Payload Size bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes					
	PLSIZE<2:0> 000 = 8 data 001 = 12 data 010 = 16 data 011 = 20 data 100 = 24 data 101 = 32 data 110 = 48 data 111 = 64 data FSIZE<4:0>: 0_0000 = FIF 0_0001 = FIF	Payload Size bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes	1) e deep es deep es deep				
bit 31-29	PLSIZE<2:0> 000 = 8 data 001 = 12 data 010 = 16 data 100 = 24 data 101 = 32 data 110 = 48 data 111 = 64 data FSIZE<4:0>: 0_0000 = FIF 0_0010 = FIF 1_1111 = FF	Payload Size bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes bytes FIFO Size bits ⁽ FO is 1 Message O is 2 Message	1) e deep es deep es deep ages deep				
bit 31-29 bit 28-24	PLSIZE<2:0> 000 = 8 data 001 = 12 data 010 = 16 data 011 = 20 data 100 = 24 data 101 = 32 data 110 = 48 data 111 = 64 data FSIZE<4:0>: 0_0000 = FIF 0_0001 = FIF 0_0010 = FIF 0_0000 = Disable 01 = Three re 10 = Unlimite	•: Payload Size bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes bytes bytes a bytes FIFO Size bits ⁽ FO is 1 Message FO is 2 Message FO is 32 Message FO is 32 Message FO is 32 Message ted: Read as '0 Retransmission s enabled when retransmission at d number of ret	1) e deep es deep ages deep , Attempts bits CiCON.RTXA attempts tempts ransmission a	AT is set.			
bit 31-29 bit 28-24 bit 23	PLSIZE<2:0> 000 = 8 data 001 = 12 data 010 = 16 data 100 = 24 data 101 = 32 data 110 = 48 data 111 = 64 data FSIZE<4:0>: 0_0000 = FIF 0_0010 = FIF 0_0010 = FIF 0_0010 = FIF Unimplement TXAT<1:0>: This feature is 00 = Disable 01 = Three re 10 = Unlimite 11 = Unlimite TXPRI<4:0>:	•: Payload Size bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes a bytes bytes bytes a bytes FIFO Size bits ⁽ FO is 1 Message FO is 2 Message FO is 3 Message FO is 32 Message FO is 32 Message ted: Read as '0 Retransmission s enabled when retransmission at	1) e deep es deep ages deep ' Attempts bits CiCON.RTX/ attempts tempts ransmission a ransmission a smit Priority bi	AT is set. attempts attempts			

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - **3:** FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER	R 3-28: CiFIFOCONm – FIFO CONTROL REGISTER m, (m = 0 TO 31) (CONTINUED)
bit 15-11	Unimplemented: Read as '0'
bit 10	FRESET: FIFO Reset bit ⁽³⁾
	1 = FIFO will be reset when bit is set; cleared by hardware when FIFO was reset. User should wait until this bit is clear before taking any action.
	0 = No effect
bit 9	TXREQ: Message Send Request bit ⁽²⁾
	<u>TXEN = 1</u> (FIFO configured as a Transmit FIFO)
	1 = Requests sending a message; the bit will automatically clear when all the messages queued in the FIFO are successfully sent.
	0 = Clearing the bit to '0' while set ('1') will request a message abort.
	<u>TXEN = 0</u> (FIFO configured as a Receive FIFO)
	This bit has no effect.
bit 8	UINC: Increment Head/Tail bit
	<u>TXEN = 1</u> (FIFO configured as a Transmit FIFO)
	When this bit is set, the FIFO head will increment by a single message.
	<u>TXEN = 0</u> (FIFO configured as a Receive FIFO) When this bit is set, the FIFO tail will increment by a single message.
bit 7	TXEN: TX/RX FIFO Selection bit ⁽¹⁾
	1 = Transmit FIFO
	0 = Receive FIFO
bit 6	RTREN: Auto RTR Enable bit
	1 = When a remote transmit is received, TXREQ will be set.
	0 = When a remote transmit is received, TXREQ will be unaffected.
bit 5	RXTSEN : Received Message Time Stamp Enable bit ⁽¹⁾
	 1 = Capture time stamp in received message object in RAM. 0 = Don't capture time stamp.
bit 4	TXATIE: Transmit Attempts Exhausted Interrupt Enable bit
	1 = Enable interrupt
	0 = Disable interrupt
bit 3	RXOVIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 2	TFERFFIE : Transmit/Receive FIFO Empty/Full Interrupt Enable bit <u>TXEN = 1</u> (FIFO configured as a Transmit FIFO)
	Transmit FIFO Empty Interrupt Enable
	1 = Interrupt enabled for FIFO empty
	0 = Interrupt disabled for FIFO empty
	TXEN = 0 (FIFO configured as a Receive FIFO)
	Receive FIFO Full Interrupt Enable 1 = Interrupt enabled for FIFO full
	0 = Interrupt disabled for FIFO full
Note 1:	These bits can only be modified in Configuration mode.

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- **3:** FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 3-28: CiFIFOCONm – FIFO CONTROL REGISTER m, (m = 0 TO 31) (CONTINUED)

bit 1	TFHRFHIE : Transmit/Receive FIFO Half Empty/Half Full Interrupt Enable bit <u>TXEN = 1</u> (FIFO configured as a Transmit FIFO) Transmit FIFO Half Empty Interrupt Enable 1 = Interrupt enabled for FIFO half empty 0 = Interrupt disabled for FIFO half empty <u>TXEN = 0</u> (FIFO configured as a Receive FIFO) Receive FIFO Half Full Interrupt Enable 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 0	<pre>TFNRFNIE: Transmit/Receive FIFO Not Full/Not Empty Interrupt Enable bit <u>TXEN = 1</u> (FIFO configured as a Transmit FIFO) Transmit FIFO Not Full Interrupt Enable 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full <u>TXEN = 0</u> (FIFO configured as a Receive FIFO) Receive FIFO Not Empty Interrupt Enable 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty</pre>

- **Note 1:** These bits can only be modified in Configuration mode.
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - **3:** FRESET is set while in Configuration mode and is automatically cleared in Normal mode.

REGISTER 3-29:	CIFIFOSTAM – FIFO STATUS REGISTER m, (m = 0 TO 31)
----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	_	—	_
bit 31							bit 24
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
 bit 23	_	—		_	_	_	 bit 16
511 20							
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—			FIFOCI<4:0> ⁽¹)	
bit 15							bit 8
HS/C-0	HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	R-0
TXABT ⁽²⁾⁽³⁾	TXLARB (2)(3)	TXERR ⁽²⁾⁽³⁾	TXATIF	RXOVIF	TFERFFIF	TFHRFHIF	TFNRFNIF
bit 7							bit (
Legend:							
R = Readable I		W = Writable t	oit	•	mented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 31-13	Unimplemen	ted: Read as '0)'				
	FIFOCI<4:0> TXEN = 1 (FII A read of this TXEN = 0 (FII	: FIFO Message FO is configured bit field will retu FO is configured bit field will re	e Index bits ⁽¹⁾ d as a Transm urn an index to d as a Receive	iit FIFO) the message e FIFO)			
bit 12-8	FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this message TXABT: Mess 1 = Message	FIFO Message FO is configured bit field will retu FO is configured bit field will re sage Aborted St was aborted	e Index bits ⁽¹⁾ d as a Transm urn an index to d as a Receive eturn an index ratus bit ⁽²⁾⁽³⁾	iit FIFO) the message e FIFO)			
bit 12-8 bit 7	FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this message TXABT: Mess 1 = Message 0 = Message	FIFO Message FO is configured bit field will retu FO is configured bit field will re sage Aborted St was aborted completed suc	e Index bits ⁽¹⁾ d as a Transm urn an index to d as a Receive eturn an index catus bit ⁽²⁾⁽³⁾ cessfully	it FIFO) o the message e FIFO) to the messa			
bit 12-8 bit 7	FIFOCI<4:0>: <u>TXEN = 1</u> (FIR A read of this <u>TXEN = 0</u> (FIR A read of this message TXABT: Mess 1 = Message TXLARB: Me 1 = Message	FIFO Message FO is configured bit field will retu FO is configured bit field will re sage Aborted St was aborted	e Index bits ⁽¹⁾ d as a Transm urn an index to d as a Receive eturn an index atus bit ⁽²⁾⁽³⁾ cessfully itration Status while being so	bit FIFO) the message e FIFO) to the messa to the messa bit ⁽²⁾⁽³⁾			
bit 12-8 bit 7 bit 6	FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this message TXABT: Mess 1 = Message 0 = Message 1 = Message 0 = Message 0 = Message	EFIFO Message FO is configured bit field will retu FO is configured bit field will retu FO is configured bit field will re sage Aborted St was aborted completed suc ssage Lost Arbi lost arbitration	e Index bits ⁽¹⁾ d as a Transm urn an index to d as a Receive eturn an index ratus bit ⁽²⁾⁽³⁾ cessfully itration Status while being so bitration while	bit (2)(3) bit (2)(3) bit (3) bit (2)(3) bit (3) bit (2)(3) bit (3) bit (3) bi			
bit 31-13 bit 12-8 bit 7 bit 6 bit 5	FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this message TXABT: Mess 1 = Message 0 = Message 0 = Message 0 = Message TXERR: Error 1 = A bus err	EFIFO Message FO is configured bit field will retu FO is configured s bit field will re sage Aborted St was aborted completed suc ssage Lost Arbi lost arbitration did not lose arb	e Index bits ⁽¹⁾ d as a Transm um an index to d as a Receive eturn an index ratus bit ⁽²⁾⁽³⁾ cessfully itration Status while being so bitration while ng Transmissi ile the messag	bit FIFO) the message e FIFO) to the message bit ⁽²⁾⁽³⁾ ent being sent on bit ⁽²⁾⁽³⁾ ge was being s	ge that the FIF		
bit 12-8 bit 7 bit 6	FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this message TXABT: Mess 1 = Message 0 = Message 0 = Message TXLARB: Me 1 = Message 0 = Message TXERR: Error 1 = A bus err 0 = A bus err TXATIF: Tran <u>TXEN = 1</u> (FII 1 = Interrupt 0 = Interrupt	EFIFO Message FO is configured bit field will retu- FO is configured so bit field will retu- FO is configured so bit field will re sage Aborted St was aborted completed suc ssage Lost Arbi- lost arbitration did not lose art r Detected Durir or did not occur smit Attempts E FO is configured pending	e Index bits ⁽¹⁾ d as a Transm um an index to d as a Receive eturn an index tatus bit ⁽²⁾⁽³⁾ cessfully itration Status while being se bitration while ng Transmissi ile the messag r while the me Exhausted Inte d as a Transm	bit FIFO) the message e FIFO) to the message bit ⁽²⁾⁽³⁾ ent being sent on bit ⁽²⁾⁽³⁾ ge was being sent ssage was being srupt Pending bit FIFO)	ge that the FIF ent ng sent		
bit 12-8 bit 7 bit 6 bit 5 bit 4 Note 1: FIF(FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this <u>message</u> TXABT: Mess 1 = Message 0 = Message TXLARB: Me 1 = Message 0 = Message TXERR: Error 1 = A bus err 0 = A bus err TXATIF: Tran <u>TXEN = 1</u> (FII 1 = Interrupt 0 = Interrupt <u>TXEN = 0</u> (FII Read as '0' OCI<4:0> gives	EFIFO Message FO is configured bit field will retu- FO is configured bit field will retu- FO is configured bit field will retu- sage Aborted St was aborted completed suc- ssage Lost Arbit lost arbitration did not lose artu- the Detected Durin or did not occur smit Attempts E FO is configured pending not pending	e Index bits ⁽¹⁾ d as a Transm im an index to d as a Receive turn an index to tatus bit ⁽²⁾⁽³⁾ cessfully itration Status while being so bitration while ng Transmissi ile the messag r while the me Exhausted Inte d as a Transm d as a Receive	hit FIFO) the message e FIFO) to the message e FIFO) to the message bit ⁽²⁾⁽³⁾ ent being sent on bit ⁽²⁾⁽³⁾ ge was being s ssage was being errupt Pending hit FIFO) e FIFO) message in the	ge that the FIF ent ng sent bit e FIFO. If the F	⁻ O will use to s	save the ne
bit 12-8 bit 7 bit 6 bit 5 bit 4 Note 1: FIF(FIFOCI<4:0>: <u>TXEN = 1</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this <u>TXEN = 0</u> (FII A read of this message TXABT: Mess 1 = Message 0 = Message TXLARB: Me 1 = Message 0 = Message TXERR: Error 1 = A bus err 0 = A bus err TXATIF: Tran <u>TXEN = 1</u> (FII 1 = Interrupt 0 = Interrupt <u>TXEN = 0</u> (FII Read as '0' DCI<4:0> gives IZE=5'h03) FIF	EFIFO Message FO is configured bit field will retu- FO is configured bit field will retu- FO is configured bit field will retu- FO is configured was aborted St was aborted St was aborted St was aborted St was aborted St was aborted St was aborted Durin of lost arbitration did not lose art r Detected Durin or occurred whi or did not occur smit Attempts E FO is configured pending FO is configured s a zero-indexed	e Index bits ⁽¹⁾ d as a Transmurn an index to d as a Receive eturn an index tatus bit ⁽²⁾⁽³⁾ cessfully itration Status while being se bitration while ng Transmissi ile the message r while the me Exhausted Inte d as a Receive d value to the n a value of 0	bit FIFO) the message e FIFO) to the message e FIFO) to the messa bit ⁽²⁾⁽³⁾ ent being sent on bit ⁽²⁾⁽³⁾ ge was being sent ssage was being errupt Pending bit FIFO) e FIFO) message in the to 3 depending	ge that the FIF ent ng sent bit e FIFO. If the F	⁻ O will use to s	save the ne

REGISTER 3-29: CiFIFOSTAM – FIFO STATUS REGISTER m, (m = 0 TO 31) (CONTINUED)

bit 3	RXOVIF: Receive FIFO Overflow Interrupt Flag bit <u>TXEN = 1</u> (FIFO is configured as a Transmit FIFO) Unused, Read as '0' <u>TXEN = 0</u> (FIFO is configured as a Receive FIFO) 1 = Overflow event has occurred 0 = No overflow event has occurred
bit 2	TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit <u>TXEN = 1</u> (FIFO is configured as a Transmit FIFO) Transmit FIFO Empty Interrupt Flag 1 = FIFO is empty 0 = FIFO is not empty; at least one message queued to be transmitted <u>TXEN = 0</u> (FIFO is configured as a Receive FIFO) Receive FIFO Full Interrupt Flag 1 = FIFO is empty 0 = FIFO is not full
bit 1	TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit <u>TXEN = 1</u> (FIFO is configured as a Transmit FIFO) Transmit FIFO Half Empty Interrupt Flag $1 = FIFO$ is \leq half full 0 = FIFO is $>$ half full <u>TXEN = 0</u> (FIFO is configured as a Receive FIFO) Receive FIFO Half Full Interrupt Flag $1 = FIFO$ is \geq half full $0 = FIFO$ is \leq half full
bit 0	TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit <u>TXEN = 1</u> (FIFO is configured as a Transmit FIFO) Transmit FIFO Not Full Interrupt Flag 1 = FIFO is not full 0 = FIFO is full <u>TXEN = 0</u> (FIFO is configured as a Receive FIFO) Receive FIFO Not Empty Interrupt Flag 1 = FIFO is not empty, contains at least one message 0 = FIFO is empty
Note 1:	FIFOCI<4:0> gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE=5'h03) FIFOCI will take on a value of 0 to 3 depending on the state of the FIFO.

- 2: This bit is cleared when TXREQ is set or by writing a 0 using the SPI.
- 3: This bit is updated when a message completes (or aborts) or when the FIFO is reset.

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 31							bit 24
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 23							bit 16
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	٩<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpler	nented bit, re	ead as '0'	
-n = Value at PO	DR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

REGISTER 3-30: CiFIFOUAm – FIFO USER ADDRESS REGISTER m, (m = 1 TO 31)

FIFOUA<31:0>: FIFO User Address bits
 <u>TXEN = 1</u> (FIFO is configured as a Transmit FIFO)
 A read of this register will return the address where the next message is to be written (FIFO head).
 <u>TXEN = 0</u> (FIFO is configured as a Receive FIFO)
 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit is not guaranteed to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-31: CIFLTCONm – FILTER CONTROL REGISTER m, (m = 0 TO 7)

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN3	_	_			F3BP<4:0>(1)		-
bit 31							bit 24
DAMO			DAMO	DAMO	DAMO	DAMA	DAMO
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0 F2BP<4:0> ⁽¹⁾	R/W-0	R/W-0
FLTEN2 bit 23	_	_			F2BP<4:0>(*)		bit 16
5011 25							
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN1		—			F1BP<4:0> ⁽¹⁾		
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTEN0				10000	F0BP<4:0> ⁽¹⁾	1000 0	10000
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 31 bit 30-29	1 = Filter is e 0 = Filter is d			<u> </u>			
bit 28-24	F3BP<4:0>:	Pointer to FIFC	when Filter 3	hits bits ⁽¹⁾			
		essage matchin	g filter is store				
	0_0001 = Me	essage matchin	g filter is store g filter is store g filter is store	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1	eceive messages		
bit 23	0_0010 = Me 0_0001 = Me 0_0000 = Re	essage matchin	g filter is store g filter is store g filter is store is the TX Que	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re	eceive messages	1	
bit 23	0_0010 = Me 0_0001 = Me 0_0000 = Re	essage matchin essage matchin served FIFO 0 nable Filter 2 to enabled	g filter is store g filter is store g filter is store is the TX Que	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re	eceive messages	;	
	0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN2>: Er 1 = Filter is e 0 = Filter is d	essage matchin essage matchin served FIFO 0 nable Filter 2 to enabled	g filter is store g filter is store g filter is store is the TX Que Accept Messa	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re	eceive messages	5	
bit 23 bit 22-21 bit 20-16	0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN2>: Er 1 = Filter is e 0 = Filter is d Unimplemen	essage matchin essage matchin served FIFO 0 nable Filter 2 to enabled lisabled	g filter is store g filter is store g filter is store is the TX Que Accept Messa	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re ages bit	eceive messages	3	
bit 22-21	0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN2>: Er 1 = Filter is e 0 = Filter is d Unimplemen F2BP<4:0>: I 1_1111 = Me 1_1110 = Me	essage matchin essage matchin served FIFO 0 nable Filter 2 to nabled lisabled ted: Read as 1	g filter is store g filter is store g filter is store is the TX Que Accept Messa 0' when Filter 2 g filter is store	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re ages bit hits bits ⁽¹⁾ ed in FIFO 31	eceive messages	5	
bit 22-21	0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN2>: Er 1 = Filter is e 0 = Filter is d Unimplemen F2BP<4:0>: I 1_1111 = Me 1_1110 = Me 0_0010 = Me 0_0001 = Me	essage matchin served FIFO 0 nable Filter 2 to mabled lisabled ted: Read as ' Pointer to FIFC essage matchin essage matchin essage matchin	g filter is store g filter is store g filter is store is the TX Que Accept Messa o' when Filter 2 g filter is store g filter is store g filter is store g filter is store	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re ages bit hits bits ⁽¹⁾ ed in FIFO 31 ed in FIFO 30 ed in FIFO 2 ed in FIFO 1	eceive messages		
bit 22-21 bit 20-16	0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN2>: En 1 = Filter is e 0 = Filter is d Unimplemen F2BP<4:0>: I 1_1111 = Me 1_1110 = Me 0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN1: Ena 1 = Filter is e	essage matchin served FIFO 0 nable Filter 2 to nabled lisabled ted: Read as f Pointer to FIFC essage matchin essage matchin essage matchin served FIFO 0 able Filter 1 to A enabled	g filter is store g filter is store g filter is store is the TX Que Accept Messa o when Filter 2 g filter is store g filter is store g filter is store g filter is store g filter is store is the TX Que	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re ages bit hits bits ⁽¹⁾ ed in FIFO 31 ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re			
bit 22-21	0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN2>: Er 1 = Filter is e 0 = Filter is d Unimplemen F2BP<4:0>: I 1_1111 = Me 1_1110 = Me 0_0010 = Me 0_0001 = Me 0_0000 = Re FLTEN1: Ena 1 = Filter is e 0 = Filter is d	essage matchin served FIFO 0 nable Filter 2 to nabled lisabled ted: Read as f Pointer to FIFC essage matchin essage matchin essage matchin served FIFO 0 able Filter 1 to A enabled	g filter is store g filter is store g filter is store is the TX Que Accept Messa 0' when Filter 2 g filter is store g filter is store g filter is store g filter is store is the TX Que Accept Messag	ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re ages bit hits bits ⁽¹⁾ ed in FIFO 31 ed in FIFO 30 ed in FIFO 2 ed in FIFO 1 eue and can't re			

Note 1: This bit can only be modified if the corresponding filter is disabled (FLTEN = 0).

REGISTER 3-31: CIFLTCONM – FILTER CONTROL REGISTER m, (m = 0 TO 7) (CONTINUED)

bit 12-8	F1BP<4:0>: Pointer to FIFO when Filter 1 hits bits ⁽¹⁾ 1_1111 = Message matching filter is stored in FIFO 31 1_1110 = Message matching filter is stored in FIFO 30
	0_0010 = Message matching filter is stored in FIFO 2 0_0001= Message matching filter is stored in FIFO 1 0_0000 = Reserved FIFO 0 is the TX Queue and can't receive messages
bit 7	FLTEN0: Enable Filter 0 to Accept Messages bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	Unimplemented: Read as '0'
bit 4-0	F0BP<4:0>: Pointer to FIFO when Filter 0 hits bits ⁽¹⁾ 1_1111 = Message matching filter is stored in FIFO 31 1_1110 = Message matching filter is stored in FIFO 30
	0_0010 = Message matching filter is stored in FIFO 2 0_0001 = Message matching filter is stored in FIFO 1 0_0000 = Reserved FIFO 0 is the TX Queue and can't receive messages

Note 1: This bit can only be modified if the corresponding filter is disabled (FLTEN = 0).

					~	,	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	EXIDE	SID11			EID<17:13>		
bit 31							bit 24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EID<	:12:5>			
bit 23							bit 16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	EID)<4:0>			SID	<10:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SID	<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
h# 04		- to de De ed es (. 1				
bit 31	-	nted: Read as '					
bit 30		ended Identifier E	inable bit				
		only messages w	ith extended	identifier			
		only messages w					
bit 29		dard Identifier fill					
bit 28-11	EID<17:0>:	Extended Identif	fier filter bits				
	In DeviceNe	t mode, these ar	e the filter bit	s for the first 18	data bits		
bit 10-0	SID<10:0>:	Standard Identifi	er filter bits				

REGISTER 3-32: CIFLTOBJM – FILTER OBJECT REGISTER m,(m = 0 TO 31)

Note 1: This register can only be modified when the filter is disabled(CiFLTCON.FLTENm = 0).

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	MIDE	MSID11			MEID<17:13>	•	
bit 31							bit 24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MEID	<12:5>			
bit 23							bit 16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	DAMO
R/W-0			R/W-0	R/W-U			R/W-0
11145	MEIL)<4:0>			MSID	<10:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MSID)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
bit 31	Unimplemer	ted: Read as '0)'				
bit 30	MIDE: Identif	ier Receive mo	de bit				
				or extended ID) lessage frames			t in filter
bit 29		ndard Identifier I		Ū			
bit 28-11	MEID<17:0>	: Extended Iden	tifier Mask bit	ts			
	In DeviceNet	mode, these ar	e the mask b	its for the first 18	8 data bits		
		<u>.</u>					

REGISTER 3-33: CIMASKm – MASK REGISTER m, (m = 0 TO 31)

bit 10-0 **MSID<10:0>:** Standard Identifier Mask bits

MCP2517FD

NOTES:

3.3 Message Memory

The MCP2517FD contains a 2KB RAM that is used to store message objects. There are three different kinds of message objects:

- Table 3-5: Transmit Message Objects used by the TXQ and by TX FIFOs.
- Table 3-6: Receive Message Objects used by RX FIFOs.
- Table 3-7: TEF objects.

Figure 3-2 illustrates how message objects are mapped into RAM. The number of message objects for the TEF, the TXQ, and for each FIFO is configurable. Only the message objects for FIFO2 are shown in detail. The number of data bytes per message object (payload) is individually configurable for the TXQ and each FIFO.

FIFOs and message objects can only be configured in Configuration mode.

The TEF objects are allocated first. Space in RAM will only be reserved if CiCON.STEF = 1.

Next the TXQ objects are allocated. Space in RAM will only be reserved if CiCON.TXQEN = 1.

Next the message objects for FIFO1 through FIFO31 are allocated.

This highly-flexible configuration results in a very efficient usage of the RAM.

The addresses of the message objects depend on the selected configuration. The application doesn't have to calculate the addresses. The User Address field provides the address of the next message object to read from or write to.

3.3.1 RAM ECC

The RAM is protected with an Error Correction Code (ECC). The ECC logic supports Single Error Correction (SEC), and Double Error Detection (DED).

SEC/DED requires seven parity bits in addition to the 32 data bits.

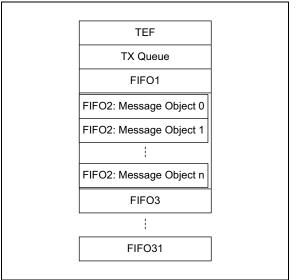
Figure 3-3 shows the block diagram of the ECC logic.

3.3.1.1 ECC Enable and Disable

The ECC logic can be enabled by setting ECCCON.ECCEN. When ECC is enabled, the data written to the RAM is encoded, and the data read from RAM is decoded.

When the ECC logic is disabled, the data is written to RAM, the parity bits are taken from ECCCON.PARITY. This enables the testing of the ECC logic by the user. During a read the parity bits are stripped out and the data is read back unchanged.

3.3.1.2 RAM Write


During a RAM write, the Encoder calculates the parity bits and adds the parity bits to the input data.

3.3.1.3 RAM READ

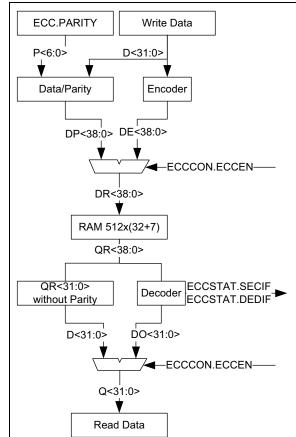

During a RAM read, the Decoder checks the output data from RAM for consistency and removes the parity bits. It corrects single bit errors and detects double bit errors.

FIGURE 3-2: N

MESSAGE MEMORY ORGANIZATION

FIGURE 3-3: ECC LOGIC

Word		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
Т0	31:24			SID11			EID<17:6>		
	23:16				EID<	12:5>			
	15:8			EID<4:0>				SID<10:8>	
	7:0				SID<	:7:0>			
T1	31:24					—			
	23:16								
	15:8				SEQ<6:0>				ESI
	7:0	FDF	BRS	RTR	IDE		DLC<	<3:0>	
T2 (1)	31:24				Transmit D	ata Byte 3			
	23:16				Transmit D	ata Byte 2			
	15:8				Transmit D	ata Byte 1			
	7:0				Transmit D	ata Byte 0			
Т3	31:24				Transmit D	ata Byte 7			
	23:16				Transmit D	ata Byte 6			
	15:8				Transmit D	ata Byte 5			
	7:0				Transmit D	ata Byte 4			
Ti	31:24				Transmit D	ata Byte n			
	23:16				Transmit Da	ata Byte n-1			
	15:8				Transmit Da	ata Byte n-2			
	7:0				Transmit Da	ata Byte n-3			

TABLE 3-5: TRANSMIT MESSAGE OBJECT (TXQ AND TX FIFO)

bit T0.31-30 Unimplemented: Read as 'x'

- bit T0.29 SID11: In FD mode the standard ID can be extended to 12 bit using r1
- bit T0.28-11 EID<17:0>: Extended Identifier
- bit T0.10-0 SID<10:0>: Standard Identifier
- bit T1.31-16 Unimplemented: Read as 'x'
- bit T1.15-9 SEQ<6:0>: Sequence to keep track of transmitted messages in Transmit Event FIFO
- bit T1.8 ESI: Error Status Indicator

In CAN to CAN gateway mode (CiCON.ESIGM=1), the transmitted ESI flag is a "logical OR" of T1.ESI and error passive state of the CAN controller;

- In normal mode ESI indicates the error status
- 1 = Transmitting node is error passive
- 0 = Transmitting node is error active
- bit T1.7 **FDF:** FD Frame; distinguishes between CAN and CAN FD formats
- bit T1.6 **BRS:** Bit Rate Switch; selects if data bit rate is switched
- bit T1.5 RTR: Remote Transmission Request; not used in CAN FD
- bit T1.4 IDE: Identifier Extension Flag; distinguishes between base and extended format
- bit T1.3-0 DLC<3:0>: Data Length Code
- Note 1: Data Bytes 0-n: payload size is configured individually in control register (CiFIFOCONm.PLSIZE<2:0>).

IABLE	3-0.	RECEIVE	MESSAGE	ODJECI					
Word		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
R0	31:24			SID11			EID<17:6>		
	23:16		•	•	EID<	12:5>			
	15:8			EID<4:0>				SID<10:8>	
	7:0				SID<	:7:0>			
R1	31:24								
	23:16								
	15:8		•	FILHIT<4:0>		•		—	ESI
	7:0	FDF	BRS	RTR	IDE		DLC<	<3:0>	•
R2 ⁽²⁾	31:24				RXMSGT	S<31:24>			
	23:16				RXMSGT	S<23:16>			
	15:8				RXMSG	「S<15:8>			
	7:0				RXMSG	TS<7:0>			
R3 ⁽¹⁾	31:24				Receive D	ata Byte 3			
	23:16				Receive D	ata Byte 2			
	15:8				Receive D	ata Byte 1			
	7:0				Receive D	ata Byte 0			
R4	31:24				Receive D	ata Byte 7			
	23:16				Receive D	ata Byte 6			
	15:8				Receive D	ata Byte 5			
	7:0				Receive D	ata Byte 4			
Ri	31:24				Receive D	ata Byte n			
	23:16				Receive Da	ata Byte n-1			
	15:8				Receive Da	ata Byte n-2			
	7:0				Receive Da	ata Byte n-3			

TABLE 3-6: RECEIVE MESSAGE OBJECT

- bit R0.31-30 Unimplemented: Read as 'x'
- bit R0.29 SID11: In FD mode the standard ID can be extended to 12 bit using r1
- bit R0.28-11 EID<17:0>: Extended Identifier
- bit R0.10-0 SID<10:0>: Standard Identifier
- bit R1.31-16 Unimplemented: Read as 'x'
- bit R1.15-11 FILTHIT<4:0>: Filter Hit, number of filter that matched
- bit R1.10-9 Unimplemented: Read as 'x'
- bit R1.8 ESI: Error Status Indicator
 - 1 = Transmitting node is error passive
 - 0 = Transmitting node is error active
- bit R1.7 FDF: FD Frame; distinguishes between CAN and CAN FD formats
- bit R1.6 BRS: Bit Rate Switch; indicates if data bit rate was switched
- bit R1.5 RTR: Remote Transmission Request; not used in CAN FD
- bit R1.4 **IDE:** Identifier Extension Flag; distinguishes between base and extended format
- bit R1.3-0 DLC<3:0>: Data Length Code
- bit R2.31-0 RXMSGTS<31:0>: Receive Message Time Stamp
- Note 1: RXMOBJ: Data Bytes 0-n: payload size is configured individually in the FIFO control register (CiFIFOCONm.PLSIZE<2:0>).
 - 2: R2 (RXMSGTS) only exits in objects where CiFIFOCONm.RXTSEN is set.

Word		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
TE0	31:24			SID11			EID<17:6>		
	23:16				EID<	12:5>			
	15:8			EID<4:0>				SID<10:8>	
	7:0				SID<	7:0>			
TE1	31:24								
	23:16								
	15:8				SEQ<6:0>			•	ESI
	7:0	FDF	BRS	RTR	IDE		DLC<	<3:0>	
TE2 ⁽¹⁾	31:24				TXMSGT	S<31:24>			
	23:16				TXMSGT	S<23:16>			
	15:8				TXMSGT	S<15:8>			
	7:0				TXMSG	FS<7:0>			

TABLE 3-7: TRANSMIT EVENT FIFO OBJECT

bit TE0.31-30 Unimplemented: Read as 'x'

bit TE0.29 SID11: In FD mode the standard ID can be extended to 12 bit using r1

bit TE0.28-11 EID<17:0>: Extended Identifier

bit TE0.10-0 SID<10:0>: Standard Identifier

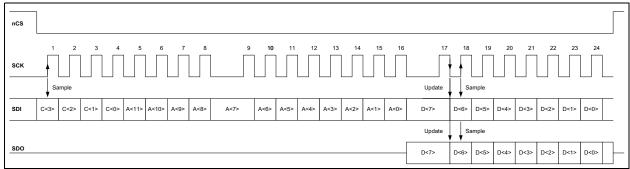
bit TE1.31-16 Unimplemented: Read as 'x'

- bit TE1.15-9 **SEQ<6:0>:** Sequence to keep track of transmitted messages
- bit TE1.8 ESI: Error Status Indicator
 - 1 = Transmitting node is error passive
 - 0 = Transmitting node is error active
- bit TE1.7 **FDF:** FD Frame; distinguishes between CAN and CAN FD formats
- bit TE1.6 **BRS:** Bit Rate Switch; selects if data bit rate is switched
- bit TE1.5 RTR: Remote Transmission Request; not used in CAN FD
- bit TE1.4 IDE: Identifier Extension Flag; distinguishes between base and extended format
- bit TE1.3-0 DLC<3:0>: Data Length Code
- bit TE2.31-0 TXMSGTS<31:0>: Transmit Message Time Stamp⁽¹⁾
- Note 1: TE2 (TXMSGTS) only exits in objects where CiTEFCON.TEFTSEN is set.

4.0 SPI INTERFACE

The MCP2517FD is designed to interface directly with an Serial Peripheral Interface (SPI) port available on most microcontrollers. The SPI in the microcontroller must be configured in mode 0,0 or 1,1 in 8-bit operating mode.

SFR and Message Memory (RAM) are accessed using SPI instructions. Figure 4-1 illustrates the generic format of the SPI instructions (SPI mode 0,0). Each instruction starts with driving nCS low (falling edge on nCS). The 4-bit command and the 12-bit address are shifted into SDI on the rising edge of SCK. During a write instruction, data bits are shifted into SDI on the rising edge of SCK. During a read instruction, data bits are shifted out of SDO on the falling edge of SCK. One or more data bytes are transfered with one instruction. Data bits are updated on the falling edge of SCK and must be valid on the rising edge of SCK.


FIGURE 4-1: SPI INSTRUCTION FORMAT

Each instruction ends with driving nCS high (rising edge on nCS).

Refer to Figure 7-1 for detailed input and output timing for both mode 0,0 and mode 1,1.

Table 4-1 lists the SPI instructions and their format.

- Note 1: The frequency of SCK has to be less than or equal to half the frequency of SYSCLK. This ensures that the synchronization between SCK and SYSCLK works correctly.
 - 2: In order to minimize the Sleep current, the SDO pin of the MCP2517FD must not be left floating while the device is in Sleep mode. This can be achieved by enabling a pull-up or pull-down resistor inside the MCU on the pin that is connected to the SDO pin of the MCP2517FD, while the MCP2517FD is in Sleep mode.

Name	Format	Description
RESET	C = 0b0000; A = 0x000	Resets internal registers to default state; selects Configuration mode.
READ	C = 0b0011; A; D = SDO	Read SFR/RAM from address A.
WRITE	C = 0b0010; A; D = SDI	Write SFR/RAM to address A.
READ_CRC	C = 0b1011; A; N; D = SDO; CRC = SDO	Read SFR/RAM from address A. N data bytes. Two bytes CRC. CRC is calculated on C, A, N and D.
WRITE_CRC	C = 0b1010; A; N; D = SDI; CRC = SDI	Write SFR/RAM to address A. N data bytes. Two bytes CRC. CRC is calculated on C, A, N and D.
WRITE_SAFE	C = 0b1100; A; D = SDI; CRC = SDI	Write SFR/RAM to address A. Check CRC before write. CRC is calculated on C, A and D.
Legend: C = Co (2 byte	· · ·	ess (12 bit), D = Data (1 to n bytes), N = Number of Bytes (1 byte), CRC

TABLE 4-1: SPI INSTRUCTIONS

4.1 SFR Access

The SFR access is byte-oriented. Any number of data bytes can be read or written with one instruction. The address is incremented by one automatically after every data byte. The address rolls over from 0x3FF to 0x000 and from 0xFFF to 0xE00.

The following SPI instructions only show the different fields and their values. Every instruction follows the generic format illustrated in Figure 4-1.

4.1.1 RESET

Figure 4-2 illustrates the RESET instruction. The instruction starts with nCS going low. The Command (C<3:0> = 0b0000) is followed by the Address (A<11:0> = 0x000). The instruction ends when nCS goes high.

The RESET instruction should only be issued after the device has entered Configuration mode. All SFR and State Machines are reset just like during a Power-on Reset (POR), and the device transitions immediately to Configuration mode.

The Message Memory is not changed.

The actual reset happens at the end of the instruction when nCS goes high.

FIGURE 4-3: SFR READ INSTRUCTION

4.1.2 SFR READ - READ

Figure 4-3 illustrates the READ instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C<3:0> = 0b0011), is followed by the Address (A<11:0>). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by data byte from address A+1 (DB[A+1]). Any number of data bytes can be read. The instruction ends when nCS goes high.

4.1.3 SFR WRITE - WRITE

Figure 4-4 illustrates the WRITE instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C<3:0> = 0b0010), is followed by the Address (A<11:0>). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). Any number of data bytes can be written. The instruction ends when nCS goes high.

Data bytes are written to the register with the falling edge on SCK following the 8th data bit.

FIGURE 4-2: RESET INSTRUCTION

nCS Low 0b0000	0x000	nCS High
----------------	-------	----------

nCS Low 0b0011 A<11:0> DB[A] DB[A+1] DB[A+n-1] nCS High							·
	nCS Low	0b0011	A<11:0>	DB[A]	DB[A+1]	 DB[A+n-1]	nCS High

FIGURE 4-4: SFR WRITE INSTRUCTION

nC	S Low	0b0010	A<11:0>	DB[A]	DB[A+1]		DB[A+n-1]	nCS High
						J		

4.2 Message Memory Access

The Message Memory (RAM) access is Word-oriented (4 bytes at a time). Any multiple of 4 data bytes can be read or written with one instruction. The address is incremented by one automatically after every data byte. The address rolls over from 0xBFF to 0x400.

The following SPI instructions only show the different fields and their values. Every instruction follows the generic format illustrated in Figure 4-1.

4.2.1 MESSAGE MEMORY READ - READ

Figure 4-5 illustrates the READ instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C<3:0> = 0b0011), is followed by the Address (A<11:0>). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by data byte from address A+1 (DB[A+1]). The instruction ends when nCS goes high.

Read commands from RAM must always read a multiple of 4 data bytes. A word is internally read from RAM after the address field, and after every fourth data byte read on the SPI. In case nCS goes high before a multiple of 4 data bytes is read on SDO, the incomplete read should be discarded by the microcontroller.

4.2.2 MESSAGE MEMORY WRITE -WRITE

Figure 4-6 illustrates the WRITE instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C<3:0> = 0b0010), is followed by the Address (A<11:0>). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). The instruction ends when nCS goes high.

Write commands must always write a multiple of 4 data bytes. After every fourth data byte, with the falling edge on SCK, the RAM Word gets written. In case nCS goes high before a multiple of 4 data bytes is received on SDI, the data of the incomplete Word will not be written to RAM.

FIGURE 4-5: MESSAGE MEMORY READ INSTRUCTION

nCS Low 0b0011	A<11:0>		DW	/[A]		nCS High	
	A>11.02	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	nCS High	

FIGURE 4-6: MESSAGE MEMORY WRITE INSTRUCTION

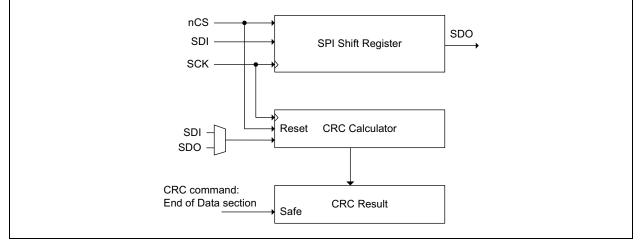
nCS Low 0b0010	4~11:0>		DW	/[A]		nCS High
	A<11:0>	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	IICS High

4.3 SPI Commands with CRC

In order to detect or avoid bit errors during SPI communication, SPI commands with CRC are available.

4.3.1 CRC CALCULATION

In parallel with the SPI shift register, the CRC is calculated, see Figure 4-7.


When nCS is asserted, the CRC calculator is reset to $\ensuremath{\mathsf{0xFFFF}}$

The result of the CRC calculation is available after the Data section of a CRC command. The result of the CRC calculation is written to the CRC register in case a CRC mismatch is detected. In case of a CRC mismatch, CRC.CRCERRIF is set.

The MCP2517FD uses the following generator polynomial: CRC-16/USB (0x8005). CRC-16 detects all single and double-bit errors, all errors with an odd number of bits, all burst errors of length 16 or less, and most errors for longer bursts. This allows an excellent detection of SPI communication errors that can happen in the system, and heavily reduces the risk of miscommunication, even under noisy environments.

The maximum number of data bits is used while reading and writing TX or RX Message Objects. A RX Message Object with 64 Bytes of data + 12 Bytes ID and Time Stamp contains 76 Bytes or 608 bits. In comparison, USB data packets contain up to 1024 bits. CRC-16 has a Hamming Distance of 4 up to 1024 bits.

FIGURE 4-7: CRC CALCULATION

4.3.2 SFR READ WITH CRC - READ_CRC

Figure 4-8 illustrates the READ_CRC instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C<3:0> = 0b1011), is followed by the Address (A<11:0>), and the number of data bytes (N<7:0>). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by the data byte from address A+1 (DB[A+1]). Any number of data bytes can be read. Next the CRC is shifted out (CRC<15:0>). The instruction ends when nCS goes high.

The CRC is provided to the microcontroller. The microcontroller checks the CRC. No interrupt is generated on CRC mismatch during a READ_CRC command inside the MCP2517FD.

If nCS goes high before the last byte of the CRC is shifted out, a CRC Form Error interrupt is generated: CRC.FERRIF.

4.3.3 SFR WRITE WITH CRC -WRITE_CRC

Figure 4-9 illustrates the WRITE_CRC instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C<3:0> = 0b1010), is followed by the Address (A<11:0>), and the number of data bytes (N<7:0>). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). Any number of data bytes can be written. Next the CRC is shifted in (CRC<15:0>). The instruction ends when nCS goes high.

The SFR is written to the register after the data byte was shifted in on SDI, with the falling edge on SCK. Data bytes are written to the register before the CRC is checked.

The CRC is checked at the end of the write access. In case of a CRC mismatch, a CRC Error interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC Form Error interrupt is generated: CRC.FERRIF.

FIGURE 4-8: SFR READ WITH CRC INSTRUCTION

nCS Low	0b1011	A<11:0>	N<7:0>	DB[A]	DB[A+1]	 DB[A+n-1]	CRC<15:8>	CRC<7:0>	nCS High

FIGURE 4-9: SFR WRITE WITH CRC INSTRUCTION

nCS Low	0b1010	A<11:0>	N<7:0>	DB[A]	DB[A+1]]	DB[A+n-1]	CRC<15:8>	CRC<7:0>	nCS High
·										

4.3.4 SFR WRITE SAFE WITH CRC -WRITE_SAFE

This instruction ensures that only correct data is written to the SFR.

Figure 4-10 illustrates the WRITE_SAFE instruction, while accessing SFR. The instruction starts with nCS going low. The Command (C<3:0> = 0b1100), is followed by the Address (A<11:0>). Afterwards, one data byte is shifted into address A (DB[A]). Next the CRC (CRC<15:0>) is shifted in. The instruction ends when nCS goes high.

The data byte is only written to the SFR after the CRC is checked and if it matches.

If the CRC mismatches, the data byte is not written to the SFR and a CRC Error interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC Form Error interrupt is generated: CRC.FERRIF.

FIGURE 4-10: SFR WRITE SAFE WITH CRC INSTRUCTION

		nCS Low	0b1100	A<11:0>	DB[A]	CRC<15:8>	CRC<7:0>	nCS High
--	--	---------	--------	---------	-------	-----------	----------	----------

4.3.5 MESSAGE MEMORY READ WITH CRC- READ_CRC

Figure 4-11 illustrates the READ_CRC instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C<3:0> = 0b1011), is followed by the Address (A<11:0>), and the number of data Words (N<7:0>). Afterwards, the data byte from address A (DB[A]) is shifted out, followed by data byte from address A+1 (DB[A+1]). Next the CRC (CRC<15:0>) is shifted out. The instruction ends when nCS goes high.

Read commands should always read a multiple of 4 data bytes. A word is internally read from RAM after the "N" field, and after every fourth data byte read on the SPI. In case nCS goes high before a multiple of 4 data bytes are read on SDO, the incomplete read should be discarded by the microcontroller.

The CRC is provided to the microcontroller. The microcontroller checks the CRC. No interrupt is generated on CRC mismatch during a READ_CRC command inside the MCP2517FD.

If nCS goes high before the last byte of the CRC is shifted out, a CRC Form Error interrupt is generated: CRC.FERRIF.

4.3.6 MESSAGE MEMORY WRITE WITH CRC - WRITE_CRC

Figure 4-12 illustrates the WRITE instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C<3:0> = 0b1010), is followed by the Address (A<11:0>), and the number of data Words (N<7:0>). Afterwards, the data byte is shifted into address A (DB[A]), next into address A+1 (DB[A+1]). Next the CRC (CRC<15:0>) is shifted in. The instruction ends when nCS goes high.

Write commands must always write a multiple of 4 data bytes. After every fourth data byte, with the falling edge on SCK, the RAM gets written. In case nCS goes high before a multiple of 4 data bytes is received on SDI, the data of the incomplete Word will not be written to RAM.

The CRC is checked at the end of the write access. In case of a CRC mismatch, a CRC interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC interrupt is generated: CRC.FERRIF.

FIGURE 4-11: MESSAGE MEMORY READ WITH CRC INSTRUCTION

nCS Low	0b1011	A<11:0>	N<7:0>		DW	/[A]		CRC<15:8>	CRC<7:0>	nCS High
IICS LOW	001011	A<11.02	IN<7.02	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	CRC<15.62	CRC<7.02	IICS Flight

FIGURE 4-12: MESSAGE MEMORY WRITE WITH CRC INSTRUCTION

	0b1010	A<11:0>	N<7:0>		DW	/[A]		CRC<15:8>	CRC<7:0>	nCS High
IICS LOV	010100	A<11.02	N~7.02	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	CKC<15.62	CRC<7.02	IICS High

4.3.7 MESSAGE MEMORY WRITE SAFE WITH CRC - WRITE SAFE

This instruction ensures that only correct data is written to RAM.

Figure 4-10 illustrates the WRITE_SAFE instruction, while accessing RAM. The instruction starts with nCS going low. The Command (C<3:0> = 0b1100), is followed by the Address (A<11:0>). Afterwards, the data byte is shifted into address A (DB[A]), next into

address A+1 (DB[A+1]), A+2 (DB[A+2]), and A+3 (DB[A+3]). Next the CRC (CRC<15:0>) is shifted in. The instruction ends when nCS goes high.

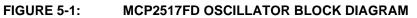
The data word is only written to RAM after the CRC is checked and if it matches.

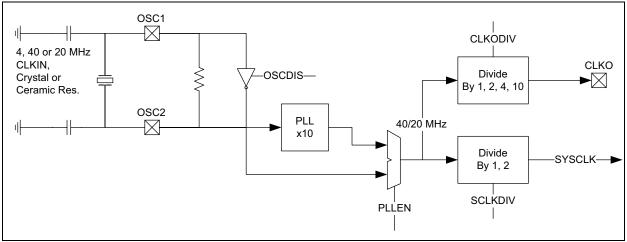
If the CRC mismatches, the data word is not written to RAM and a CRC Error interrupt is generated: CRC.CRCERRIF.

If nCS goes high before the last byte of the CRC is shifted in, a CRC interrupt is generated: CRC.FERRIF.

FIGURE 4-13: MESSAGE MEMORY WRITE SAFE WITH CRC INSTRUCTION

nCS Low	0b1100	A<11:0>		DW	/[A]		CRC<15:8>	CRC<7:0>	nCS High
	001100	A\$11.02	DB[A]	DB[A+1]	DB[A+2]	DB[A+3]	010010.02	01001.02	100 mgn


5.0 OSCILLATOR


Figure 5-1 shows the block diagram of the oscillator in the MCP2517FD. The oscillator system generates the SYSCLK, which is used in the CAN FD Controller Module and for RAM accesses. It is recommended by the CAN FD community to use either a 40 or 20 MHz SYSCLK. The time reference for clock generation can be an external 40, 20 or 4 MHz crystal, ceramic resonator or external clock.

The OSC register controls the oscillator. The PLL can be enabled to multiply the 4 MHz clock by 10.

The internal 40/20 MHz can be divided by two.

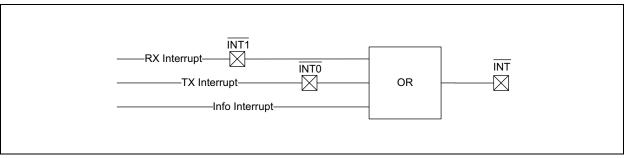
The internally generated clock can be divided and provided on the CLKO pin.

6.0 I/O CONFIGURATION

The IOCON register is used to configure the I/O pins:

- CLKO/SOF: select Clock Output or Start of Frame.
- TXCANOD: TXCAN can be configured as Push-Pull or as Open Drain output. Open Drain outputs allows the user to connect multiple controllers together to build a CAN network without using a transceiver.
- INTO and INT1 can be configured as GPIO with similar registers as in the PIC microcontrollers or as Transmit and Receive interrupts.
- INT0/GPIO0/XSTBY can also be used to automatically control the standby pin of the transceiver.

FIGURE 6-1: INTERRUPT PINS


• INTOD: The interrupt pins can be configured as open-drain or push/pull outputs.

6.0.1 INTERRUPT PINS

The MCP2517FD contains three different interrupt pins, see Figure 6-1:

- INT is asserted on any interrupt in the CiINT register (xIF & xIE).
- INT1/GPIO1 can be configured as GPIO or RX interrupt pin (CiINT.RXIF & RXIE).
- INT0/GPIO0 can be configured as GPIO or TX interrupt pin (CIINT.TXIF & TXIE).

All interrupt pins are active low.

7.0 ELECTRICAL SPECIFICATIONS

7.1 Absolute Maximum Ratings†

VDD	–0.3V to 6.0V
DC Voltage at all I/O w.r.t GND	–0.3V to VDD + 0.3V
Virtual Junction Temperature, TvJ (IEC60747-1)	40°C to +165°C
Soldering temperature of leads (10 seconds)	+300°C
ESD protection on all pins (IEC 801; Human Body Model)	±4 kV
ESD protection on all pins (IEC 801; Machine Model)	±400V
ESD protection on all pins (IEC 801; Charge Device Model)	±750V

† NOTICE: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC Specifi	cations		Electrical Characteristics:							
	1	High (H): 1	High (H): TAMB = -40°C to +150°C; VDD = 2.7V to 5.5V							
Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions/Comments				
VDD Pin										
Vdd	Voltage Range	2.7		5.5	V	RAM data retention guaranteed				
VPORH	Power-on Reset Voltage			2.65	V	Highest voltage on VDD before device releases POR				
VPORL	Power-on Reset Voltage	2.2			V	Lowest voltage on VDD before device asserts POR				
SVDD	VDD Rise Rate to ensure POR	0.05			V/ms	Note 1				
Idd	Supply Current		15	20	mA	40 MHz SYSCLK, 20 MHz SPI activity				
IDDS	Sleep Current		10	60	μA	Clock is stopped TAMB ≤ +85°C (Note 1)				
				550		Clock is stopped TAMB ≤ +150°C				
Digital Inp	ut Pins:									
VIH	High-Level Input Voltage	0.7 Vdd		VDD + 0.3	V					
VIL	Low-Level Input Voltage	-0.3		0.3 Vdd	V					
Voscpp	OSC1 detection Voltage	0.5			V	Minimum peak-to-peak voltage on OSC1 pin (Note 1)				
Iц	Input Leakage Current									
	OSC1	-5		+5	μA					
	All other	-1		+1	μA					
Digital Out	tput Pins:									
Voн	High-Level Output Voltage	VDD - 0.7			V	Юн = –2 mA, VDD = 2.7V				
Vol	Low-Level Output Voltage									
	TXCAN			0.6	V	IOL = 8 mA, VDD = 2.7V				
	All other			0.6	V	IOL = 2 mA, VDD = 2.7V				

TABLE 7-1: DC CHARACTERISTICS

Note 1: Characterized; not 100% tested.

TABLE 7-2: CLKOUT AND SOF AC CHARACTERISTICS

AC Specific	cations	Electrical Characteristics: High (H): Тамв = -40°С to +150°С; VDD = 2.7V to 5.5V					
Sym.	Characteristic	Min.	Тур.	Max.	Conditions/Comments		
TCLKOH	CLKO Output High	8			ns	@ 40 MHz (Note 1)	
TCLKOL	CLKO Output Low	8			ns	Note 1	
TCLKOR	CLKO Output Rise			5	ns	Note 1	
TCLKOF	CLKO Output Fall			5	ns	Note 1	
TSOFH	SOF Output High		31 Tosc		ns	Note 2	
TSOFPD	SOF Propagation Delay: RXCAN falling edge to SOF rising edge		1 Tosc		ns	Note 2	

Note 1: Characterized; not 100% tested.

2: Design guidance only.

AC Specifica	ations	Electrical Characteristics:							
		High (H):	High (H): TAMB = -40°C to +150°C; VDD = 2.7V to 5.5V						
Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions/Comments			
FOSC1,CLKI	OSC1 Input Frequency	2	40	40	MHz	External digital clock			
FOSC1,4M	OSC1 Input Frequency	4 – 0.5%	4	4+0.5%	MHz	4 MHz crystal/resonator (Note 1)			
Fdrift	SYSCLK frequency drift			10	ppm	Additional frequency drift of SYSCLK due to internal PLL @ 4 MHz (Note 1)			
Fosc1,20M	OSC1 Input Frequency	20 – 0.5%	20	20+0.5%	MHz	20 MHz crystal/resonator (Note 1)			
Fosc1,40M	OSC1 Input Frequency	40 – 0.5%	40	40+0.5%	MHz	40 MHz crystal/resonator (Note 1)			
TOSC1	TOSC1=1/FOSC1,x	25			ns				
Tosc1H	OSC1 Input High	0.45 * Tosc		0.55 * TOSC	ns	Note 1			
TOSC1L	OSC1 Input Low	0.45 * Tosc		0.55 * TOSC	ns	Note 1			
TOSC1R	OSC1 Input Rise			20	ns	Note 2			
TOSC1F	OSC1 Input Fall			20	ns	Note 2			
DCosc1	Duty Cycle on OSC1	45	50	55	%	External clock duty cycle require- ment (Note 1)			
TOSCSTAB	Oscillator stabilization period			3	ms	From POR to final frequency (Note 1)			
TOSCSLEEP	Oscillator stabilization from Sleep			3	ms	From Sleep to final frequency (Note 1)			
Gм,4M	Transconductance	1470		2210	μA/V	4 MHz crystal (Note 2)			
Gм,40M	Transconductance	2040		3060	μ A /V	40 MHz crystal (Note 2)			

TABLE 7-3: CRYSTAL OSCILLATOR AC CHARACTERISTICS

Note 1: Characterized; not 100% tested.

2: Design guidance only.

TABLE 7-4:CAN BIT RATE

AC Specific	ations	Electrical Characteristics: High (H): TAMB = –40°C to +150°C; VDD = 2.7V to 5.5V						
Sym	Characteristic	Min Typ Max Units Conditions/Comm				Conditions/Comments		
BRNOM	Nominal Bit Rate	125	0.5	1	Mbps			
BRDATA	Data Bit Rate	0.5	0.5 2 8 Mbps BRDATA ≥ BRNOM					

Note 1: Tested bit rates. Device allows the configuration of more bit rates, including slower bit rates than the minimum stated.

TABLE 7-5:CAN RX FILTER AC CHARACTERISTICS

AC Specific	ations	Electrical Characteristics: High (H): TAMB = -40°C to +150°C; VDD = 2.7V to 5.5V					
Sym.	Characteristic	Min.	Min. Typ. Max. Units Conditions/Com				
TPROP	Filter propagation delay		1		ns	Note 2	
TFILTER	Filter time (Note 3)	40 70 125 225		75 120 215 390	ns	T00filter T01filter T10filter T11filter	
TREVO- CERY	Minimum high time on input for output to go high again	5			ns	Note 2	

Note 1: Characterized; not 100% tested.

2: Design guidance only.

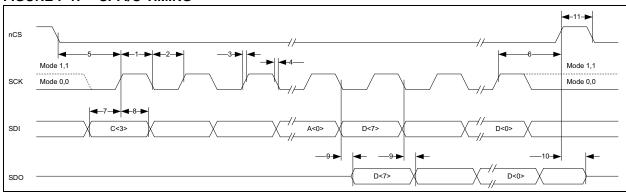

3: Pulses on RXCAN shorter than the minimum TFILTER time will be ignored; pulses longer than the maximum TFILTER time will wake-up the device.

TABLE 7-6: SPI AC CHARACTERISTICS

AC Specifications			Electrical Characteristics: High (H): TAMB = -40°C to +150°C; VDD = 2.7V to 5.5V					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions	
	Fsck	SCK Input Frequency			20	MHz	Note 3	
	Тѕск	SCK Period, TSCK=1/FSCK	50			ns	Note 3	
1	Тѕскн	SCK High Time	20			ns		
2	TSCKL	SCK Low Time	20			ns		
3	TSCKR	SCK Rise Time			100	ns	Note 2	
4	TSCKF	SCK Fall Time			100	ns	Note 2	
5	TCS2SCK	nCS ↓ to SCK ↑	Tsck/2			ns		
6	TSCK2CS	SCK ↑ to nCS ↑	Тѕск			ns		
7	T SDI2SCK	SDI Setup: SDI ‡ to SCK ↑	5			ns		
8	TSCK2SDI	SDI Hold: SCK ↑ to SDI ↓	5			ns		
9	TSCK2SDO	SDO Valid: SCK ↓ to SDO ↓			20	ns	CLOAD = 50 pF	
10	TCS2SDOZ	SDO High Z: nCS ↑ to SDO Z			2 Tsck	ns	CLOAD = 50 pF	
11	TCSD	nCS ↑ to nCS ↓	Тѕск			ns	Note 2	

Note 1: Characterized; not 100% tested.

- 2: Design guidance only.
- 3: FSCK must be less than or equal to FSYSCLK/2.

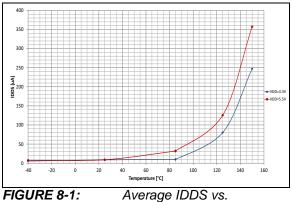
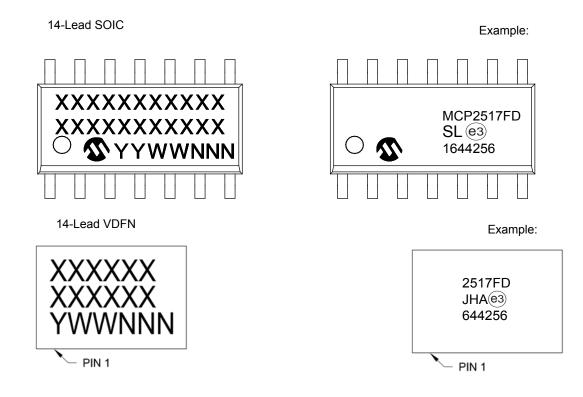

FIGURE 7-1: SPI I/O TIMING

TABLE 7-7. TEMPERATURE SPECIFICATIONS									
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions			
Temperature Ranges									
Operating Temperature Range	TA	-40		+150	°C				
Storage Temperature Range	TA	-55		+150	°C				
Thermal Package Resistance									
Thermal Resistance for SOIC-14	θJA	_	+149.5		°C/W				
Thermal Resistance for DFN-14	θJA	_	+64.1	_	°C/W				

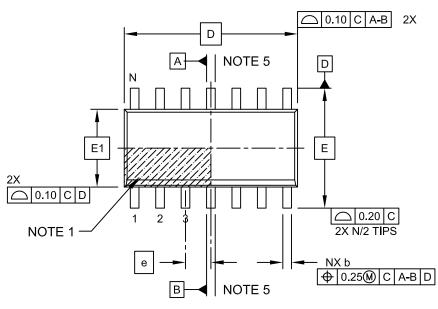
TABLE 7-7: TEMPERATURE SPECIFICATIONS

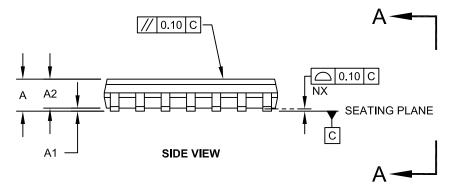
8.0 TYPICAL PERFORMANCE CURVES

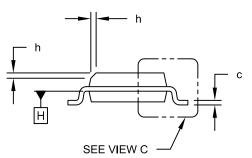

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Temperature

9.0 PACKAGING INFORMATION

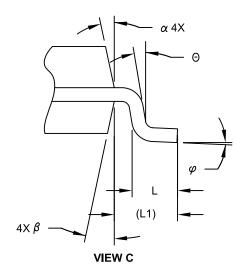

9.1 Package Marking Information

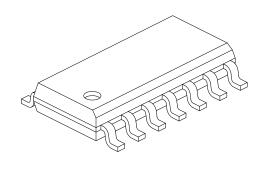

Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:		nt the full Microchip part number cannot be marked on one line, it will be carried over to ne, thus limiting the number of available characters for customer-specific information.


14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW





Microchip Technology Drawing No. C04-065C Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

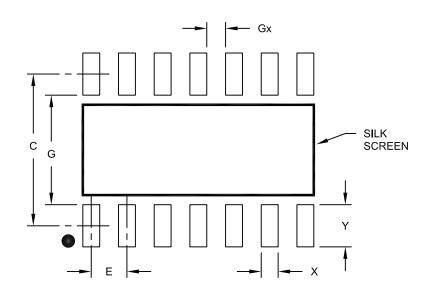
	Units	MILLIMETERS			
Dimension Lir	nits	MIN	NOM	MAX	
Number of Pins	N		14		
Pitch	е		1.27 BSC	-	
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E		6.00 BSC		
Molded Package Width	E1		3.90 BSC		
Overall Length	D		8.65 BSC		
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

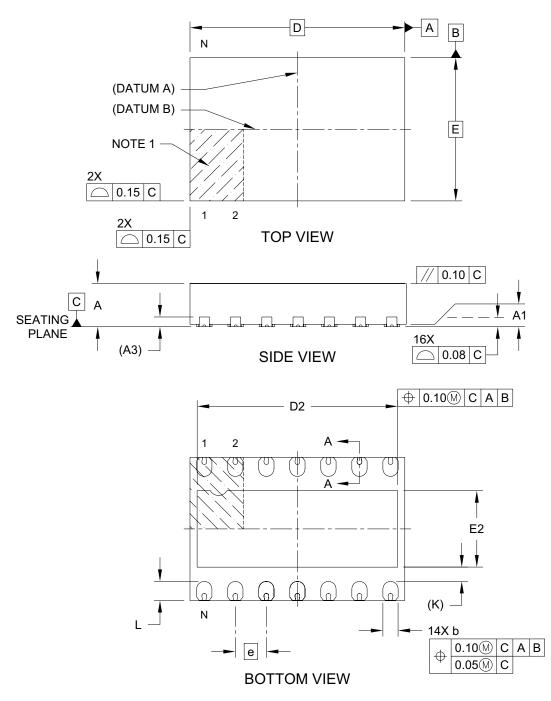
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

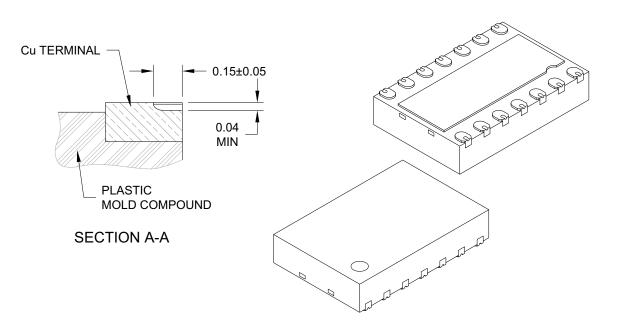
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

14-Lead Very Thin Plastic Quad Flat, No Lead Package (JHA) - 4.5x3.0 mm Body [VDFN] With Dimpled Wettable Flanks


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1198A Sheet 1 of 2

14-Lead Very Thin Plastic Quad Flat, No Lead Package (JHA) - 4.5x3.0 mm Body [VDFN] With Dimpled Wettable Flanks

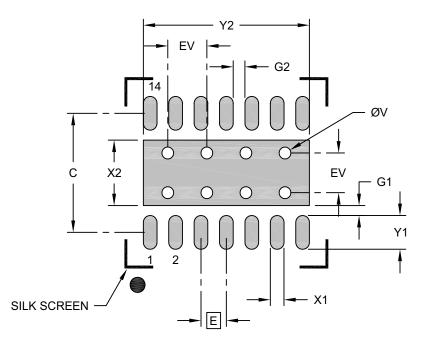
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX		
Number of Terminals	N		14			
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.85	0.90		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3		0.203 REF			
Overall Length	D		4.50 BSC			
Exposed Pad Length	D2	4.15	4.20	4.25		
Overall Width	E		3.00 BSC			
Exposed Pad Width	E2	1.55	1.60	1.65		
Terminal Width	b	0.29	0.32	0.35		
Terminal Length	L	0.35	0.40	0.45		
Terminal-to-Exposed-Pad	K	K 0.30 REF				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1198A Sheet 2 of 2

14-Lead Very Thin Plastic Quad Flat, No Lead Package (JHA) - 4.5x3.0 mm Body [VDFN] With Dimpled Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			1.65
Optional Center Pad Length	Y2			4.25
Contact Pad Spacing	С		3.00	
Contact Pad Width (X14)	X1			0.35
Contact Pad Length (X14)	Y1			0.85
Contact Pad to Center Pad (X14)	G1	0.25		
Spacing Between Contacts (X12)	G1	0.30		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3198A

APPENDIX A: REVISION HISTORY

Revision A (August 2017)

• Original Release of this Document.

ISO11898-1:2015 lists non-mandatory features. Table 9-1 clarifies which optional features are

implemented.

APPENDIX B: CAN FD CONFORMANCE

The MCP2517FD passed the CAN FD conformance tests specified in ISO/DIS16845-1:2015.

TABLE 9-1: ISO OPTIONAL FEATURES

No.	Optional Feature	Implemented
1	FD frame format	Yes
2	Disabling of frame formats	Yes. Classical CAN frame format.
3	Limited LLC frames	No. Full range of IDs and DLCs implemented.
4	No transmission of frames including padding bytes	N/A. See No. 3.
5	LLC Abort interface	Yes
6	ESI and BRS bit values	Yes
7	Method to provide MAC data consistency	Yes
8	Time and time triggering	Start of Frame output.
9	Time stamping	Yes. 32 bit TBC.
10	Bus monitoring mode	Yes
11	Handle	Yes
12	Restricted operation	Yes
13	Separate prescalers for nominal bits and for data bits	Yes
14	Disabling of automatic retransmission	Yes
15	Maximum number of retransmissions	Yes. One, 3, or unlimited.
16	Disabling of protocol exception event on res bit detected recessive	Yes. Selectable.
17	PCS_Status	No
18	Edge filtering during the bus integration state	Yes. Selectable.
19	Time resolution for SSP placement	Yes. 128 To. Measured, manual or disabled.
20	FD_T/R message	TX and RX interrupts.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>1×1⁽¹⁾ –× /××</u>	Examples:	
Device Tap	e and Reel Temperature Package Range	a) MCP2517FD-H/SL: High Temperature, Plastic SOIC (150 mil Body), 14-Lead b) MCP2517FDT-H/SL: Tape and Reel, High Temperature, Plastic SOIC	
Device:	MCP2517FD: CAN FD Controller	(150 mil Body), 14-Lead c) MCP2517FD-H/JHA:High Temperature VDFN (4.5x3 mm Body), 14-Lead	
Tape and Reel Option:	Blank = Standard packaging (tube or tray)	with Dimpled Wettable Flanks d) MCP2517FDT-H/JHA:Tape and Reel, High	
Temperature	T = Tape and Reel ⁽¹⁾ H = -40° C to +150°C (High)	(4.5x3 mm Body), 14-Lead with Dimpled Wettable Flanks	
Range: Package:	SL = Plastic SOIC (150 mil Body), 14-Lead	Note 1: Tape and Reel identifier only appears in the catalog part number description. This	
l donage.	JHA = Plastic VDFN (4.5x3 mm Body), 14-Lead with Dimpled Wettable Flanks	identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-1646-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

MCP2517FDT-H/SL MCP2517FDT-H/JHA MCP2517FD-H/JHA MCP2517FD-H/SL