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Introduction 
 Purpose of the document 

 Purpose of this document is to use/understand/flash/demonstrate interfaces on iMX8M-
THOR96 PLATFORM firmware. 

 About the System 

 This system contains iMX8M reference design with multiple interfaces, can be used for 
Human-machine interface experience. 

 

 
Figure 1 : iMX8M Thor96 Platform Connectors 



 Before You Start 
 Ensure you have x86 host system having Linux Ubuntu 16.04 LTS installed 
 Basic understanding of Linux commands 

 
 Steps to build Yocto Image 

We already prepared Meta-layer, which contains all the packages and BSP changes required 
for Thor96 firmware image. User need to download meta-layer first to build image for Thor96. 

To build Thor96 firmware on LINUX HOST PC, user need to follow below steps: 

 Open command prompt (CTRL+ALT+T) and install required packages to build. 
$: sudo apt-get install gcc g++ gawk wget git-core diffstat unzip texinfo gcc-
multilib build-essential chrpath socat libsdl1.2-dev libsdl1.2-dev xterm sed cvs 
subversion coreutils texi2html docbook-utils python3-pip python-pip python-
pysqlite2 help2man make desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev 
mercurial autoconf automake groff curl lzop asciidoc u-boot-tools 
 

 Now we need to download new repo for Thor96. Currently we are using kernel 
version 4.14.78-ga release repo. 

  To download repo, first we need repo utility. For that need to follow below steps: 
$: mkdir ~/bin 
$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo  
$: chmod a+x ~/bin/repo  
$: PATH=${PATH}:~/bin 

 Now Download Yocto Project environment into local directory 
$: mkdir thor96-yocto-bsp 
$: cd thor96-yocto-bsp 
$: repo init -u https://source.codeaurora.org/external/imx/imx-manifest  -b imx-
linux-sumo -m imx-4.14.78-1.0.0_machinelearning.xml 
$: repo sync 

 Above repo sync command will download default NXP source code into our local 
directory “thor96-yocto-bsp”. 

 Now we need to copy our meta-layer “meta-einfochips” into “sources” folder. 
 “Meta-einfochips” contains source code for our both the custom boards AIML and 

THOR96. 
 Therefore, we need to setup our environment based on target machine (board).  
 For that we need to follow below steps: (Setup Yocto Build) 

 
Apply patch “0001-iMX8-Added-required-BBLAYERs-in-local-bblayer.conf.patch”  
$: cd sources/meta-fsl-bsp-release 
$: git apply ../meta-einfochips/conf/0001-iMX8-Added-required-BBLAYERs-in-
local-bblayer.conf.patch 
In above patch we add three new BBLAYERs to our local bblayers.conf (i.e. meta-
webserver, meta-einfochips, meta-imx-machinelearning) 
 
Now setup build environments for Thor96 board. 
$: cd ../../ 



$: EULA=1 MACHINE=imx8mqthor96 DISTRO=fsl-imx-xwayland source ./fsl-
setup-release.sh -b bld-xwayland-thor96 
 

 After successful setup, we got new build directory bld-xwayland-thor96, if it is not 
there previously. Make sure in build directory “conf/bblayers.conf” contains all our 
required BBLAYERs (which we added through patch). 

 Now we are good to go and can build image. 

$: bitbake fsl-image-qt5 

 If user want to clean previously build image and want to run it again then we must first 
clean it with command “cleanall” or “cleansstate” 
$: bitbake fsl-image-qt5 -c cleanall 

$: bitbake -v fsl-image-qt5     (If user want to turn on verbose) 

 If user want to clean any particular package then also we can do that with command 
“cleanall” or “cleansstate” 
$: bitbake <PACKAGE_NAME> -c cleanall 
$: bitbake <PACKAGE_NAME> 
 
e.g. 
$: bitbake linux-imx -c cleanall 
$: bitbake linux-imx         (Build linux kernel only) 
 
Same way 
$: bitbake u-boot-imx -c cleanall 
$: bitbake u-boot-imx       (Build uboot code only) 
 
$: bitbake imx-gpu-sdk -c cleanall 
$: bitbake imx-gpu-sdk        (Build gpu sdk only) 
 
$: bitbake opencv -c cleanall 
$: bitbake opencv           (Build opencv package) 
 
$: bitbake python3-numpy -c cleanall 
$: bitbake python3-numpy        (Build numpy python package for python3) 
 

 Please note that, if you re-build any module then it is better to re-build all modules, 
which are dependent on that module. For example, if you change anything in Linux 
kernel code and rebuild it using above commands then you must need to re-build 
kernel-module-laird, imx-gpu-sdk etc. packages to avoid conflicts. 

 After successful build final sd card image reside at below location: 
thor96-yocto-bsp/bld-xwayland-thor96/tmp/deploy/images/imx8mqthor96/ 
Filename should be fsl-image-qt5-imx8mqthor96.sdcard.bz2 which is soft link of 
original build image file fsl-image-qt5-imx8mqthor96-
<TIMESTAMP>.rootfs.sdcard.bz2 

 



 Get the firmware package 
 Download the provided SD card (sdcad.bz2) image in Linux pc 
 Open terminal in host pc from left desktop panel or using keyboard shortcut (ctrl + alt 

+ t) 
 From command terminal traverse the location where downloaded firmware image is 

residing using cd command 
$: cd /home/user/download/imximages/ 

 use ls command to verify the existence of downloaded image  
$: ls -l 

 Verify md5 check sum of downloaded image with given md5sum. 
$: md5sum <image name>.sdcard.bz2 

 Extract the provided .bz2 image using bunzip2 command, which will take couple of 
minutes. 
# bunzip2 -dkf <image_name>.sdcard.bz2 

 Once done, will end with .sdcard image in the same directory and can again be verified 
using ls -l command. 

 

 Flash the firmware image to SD Card 
 

 Plugin micro SD card into x86 host pc  
 Verify the node created for SD card into /dev directory  

$:  ls -l /dev/sd* 
 Open terminal and traverse the location where downloaded firmware image is residing 

using cd command 
 Ensure the extracted firmware image's file format is sdcard using ls -l command 
 Apply below command for flashing if the SD card’s entry in Linux is /dev/sdb  

$: sudo dd if=<image_name>.sdcard of=/dev/sdb bs=1M conv=fsync ;sync 
 Above command will take couple of minutes or more (depending upon host machine 

config) to flash the SD card 
 Once done plug-out and replug-in the sd card, two drives will get mounted if the above 

gets successful, named <boot> and <rootfs> 
 Eject (safely remove) SD card from host pc and plug it into board's sdcard slot  

 

 Hardware Installation 
 Place hardware board on statically clean place 
 Plug flashed SD card to J5 SD card slot. 
 Plug serial cable's micro end to board's J10 Connector (near Ethernet connector) and 

USB end to host x86 pc's usb connector. 
 Plug Ethernet cable to board's Ethernet connector J12. 
 Apply 12V-5A power supply (provided with board) to board on J14 DC_IN connector. 

After all the other hardware setup is done and required interfaces are connected to 
board. 

 



 

Figure 2 : Thor96 Platform UART Connections 

 

 Open board's terminal- console (minicom) on x86 host pc  
 Ensure SD card is flashed and serial cable is plugged in into board as per mentioned 

in hardware setup. 
 Attached serial cable's USB end to host x86 PC's USB. 
 Ensure minicom is installed in x86 Ubuntu pc  
 Apply below command to open serial command's setting. 

$: sudo minicom -s 
 set baud rate and other setting as per below 

o baud rate=115200, 
o parity=none 
o hardware flow control = none 
o software flow control = none  
o serial device= /dev/ttyUSB0 
o save setup as dfl 

 Once board gets power-up, above configured terminal will show logs on x86 and can 
interact with board using this open terminal 

 
 
 
  



RUNNING-DEMOS 
 

1. Ethernet demo 
 Plug in Ethernet cable to target board as per above figure. 
 Power up the board. 
 Once board gets booted, apply below command using console (minicom require) 

# ifconfig. 
# ping <any server ip> 
 

2. HDMI Demo 
 Ensure board is not powered up and SD card is flashed with the latest provided 

image. 
 Insert HDMI cable into board's J2 HDMI connector. 
 Apply power to board and go to terminal of x86 host system and open board’s 

console as mentioned above 
 Hold boot on u-boot screen by pressing any key on host machine 

keyboard(immediate after boot within 3 seconds) 
 Apply dtb file changes as per below command on u-boot console 

# setenv fdt_file fsl-imx8mq-thor96.dtb 
# saveenv 
# boot 

 Console will show booting logs 
 Once booting is completed, console will hold on login prompt where user can enter 

username as root. (no password) 
 At this time connected HDMI display will show grey image of desktop and should stop 

complaining about "No Signal" 

 
Play Video Test pattern on HDMI display 
 

 Go to board's console and type below command from x86 minicom 
# gst-launch-1.0 videotestsrc ! autovideosink 

 Above command will show color strips on HDMI display 

 

Play local videos on HDMI display with audio  
 

 Ensure Ethernet is connected with board 
 Go to board's console and type below command from x86 minicom 

# ifconfig 
 Get the ip address of Ethernet eth0 interface and note down. 
 Go to x86 host system and download sample mp4 video with audio. 
 Locate to video location from command line in x86 (no minicom require) 
 Apply below command  



$: scp ./Sample_Video_with_audio.mp4 root@<noted ip address of 
board>:/home/root/ 

 This will copy the video file from host x86 to board's /home/root location  
 Go to board's console (require minicom) and ensure video got copied using ls -l 

command, will show you Sample_Video_with_audio.mp4 in current directory. 
 Be in the board's console and apply below command to play video over HDMI Display 

with audio (HDMI Display should have support of audio ) 
 
# gst-launch-1.0 filesrc location=/home/root/Sample_Video_with_audio.mp4 ! 
decodebin name=dec ! videoconvert ! autovideosink dec. ! audioconvert ! 
audioresample ! alsasink device=plughw:3,0 
 
Above command will print logs on console of board and will be played over HDMI 
display with audio. 
 
Or 
 
# gplay-1.0 Sample_Video_with_audio.mp4 
 
Here, to play audio successful user must need to have correct hardware entry inside 
/etc/asound.conf. If hardware 0 is specified then audio will be played on SAI audio 
jack and if hardware 3 is specified then audio will be played on HDMI. By default, 
audio will be played over HDMI. 
 
 

3. Dual Display Demo 
 

 Ensure board is not powered up and SD card is flashed with the latest provided 
image. 

 Insert one HDMI cable into board's J2 HDMI connector, another HDMI cable to 
HDMI2 on j15 connector 

 Apply power to board and go to terminal of x86 host system and open board’s 
console as mentioned above 

 Apply dtb file changes as per below command on u-boot console 
# setenv fdt_file fsl-imx8mq-thor96-dual-display-b3.dtb 
# saveenv 
# boot 

 Console will show booting logs 
 Login to board using root username with no password. 

 
Play local videos on HDMI display (Dual) 
 

 Copy local sample_video.mp4 & sample_video2.mp4 videos using scp command to 
on board sd card as mentioned in above demo. 



 Go to board's console (require minicom) and ensure video got copied using ls -l 
command, will show you sample_video.mp4 in current directory. 

 Apply below command to play video over HDMI(j2) Display 
# gst-launch-1.0 filesrc location=sample_video.mp4  typefind=true ! 
video/quicktime ! qtdemux ! queue max-size-time=0 ! vpudec ! queue max-size-
time=0 ! kmssink sync=true & 

 With not much delaying apply below command to play video over HDMI2 (j15) Display 
# gst-launch-1.0 -v filesrc location=sample_video2.mp4  typefind=true ! 
video/quicktime ! aiurdemux ! queue max-size-time=0 ! vpudec ! waylandsink & 

 The both the connected HDMI will show dual video demo playback. 
 

Create RTSP network for network stream testing 
 First Connect Thor96 board with linux PC where we created RTSP network. 
 We first create static network in linux PC. 
 For static IP, edit network (Ethernet) connection as given figures. 

 

 
Figure 3 : Edit network connection 



 
Figure 4 : Create Static network 

 Here we edit Ethernet connection and change IPV4 setting to “manual”. 
 Set static IP and gateway to 192.168.1.1 with netmask 255.255.255.0. 
 Now we setup RTSP stream server on Linux PC as per below images. 
 Open VLC media player and start network stream. 

 

 
Figure 5 :  Start Network Stream in VLC 



 
Figure 6 : Add Video file for RTSP stream 

 Provide any video file that we want to stream. i.e. big_buck_bunny.mp4 
 

 

Figure 7 : Verify Video details 



 

Figure 8 : Select RTSP option 

 
Figure 9 : Provide video stream name 



 
Figure 10 :  Select Video codec 

 
Figure 11 : Start Network Streaming 

 



 After above steps VLC work as network stream and make sure that stream should be 
in loop. Therefore, after finishing video it starts over again. 

 Now set static IP on board as well. 
# ifconfig eth0 192.168.1.2 
 

 
Play Network stream and local videos on HDMI display (Dual) 

 Ensure the network bandwidth.  
 To play network stream on DSI (HDMI2 – j15) display, create an rtsp server on any 

host machine (i.e. x86) and play video over network, (Follow above steps) and note IP 
address and port number for rtsp server (host machine). 

 In board’s console apply below command to play the same stream over the network 
 
gst-launch-1.0 playbin uri=rtsp://<Ip_add>:<port>/<video stream name > 
uridecodebin0::source::latency=300 & 
 
E.g. based on above setting for VLC and local LAN:   
# gst-launch-1.0 rtspsrc location=rtsp://192.168.1.1:8554/test ! decodebin ! 
kmssink sync=true & 
 

 Play simultaneously local video over HDMI1 (j2) using below command. 
# gst-launch-1.0 filesrc location=sample_video.mp4  typefind=true ! 
video/quicktime ! qtdemux ! queue max-size-time=0 ! vpudec ! queue max-size-
time=0 ! waylandsink sync=true & 

 

Play QT demo on HDMI display (Dual) 
# /usr/share/videohmiapp-1.0/VideoHMIApplication  
# /usr/share/chemicalplanthmi-1.0/ChemicalPlantHMI  
 

Make sure that weston service should be started first. 
For more details, see Section 21 and 22 (QT Demos Details). 

 

4. HDMI2 Touch Panel Demo 
 

Play local videos on HDMI display 

 Copy local sample_video.mp4 videos using scp command to on board sd card as 
mentioned in above demo. 

 Insert HDMI cable into board's J15 HDMI2 connector and touch USB to board’s USB. 
 Apply power to board and go to terminal of x86 host system and open board’s 

console as mentioned above 
 Hold boot on u-boot screen by pressing any key on host machine keyboard 

(immediate after boot within 3 seconds) 
 Apply dtb file changes as per below command on u-boot console 

# setenv fdt_file fsl-imx8mq-thor96-dcss-adv7535-b3.dtb 



# setenv mmcargs 'setenv bootargs ${jh_clk} console=${console} 
root=${mmcroot} video=HDMI-A-1:1280x800-12@70' 
# saveenv 
# boot 

 Console will show booting logs 
 Once booting is completed, console will hold on login prompt where user can enter 

username as root. (no password) 
 Once boot completes apply below commands 

# systemctl stop weston 
 Start playback using below command 

# gst-launch-1.0 filesrc location=video.mp4 typefind=true ! video/quicktime ! 
aiurdemux ! queue max-size-time=0 ! vpudec ! queue max-size-time=0 ! 
autovideosink 
 

Touch Demo 

 Ensure touch panel is connected to board using USB and is powered up. 
 Go to board's console (require minicom) , log in and apply below commands 

# ls /dev/input/ -l  

 Find entry as per below  

# lrwxrwxrwx 1 root     0      6 Nov 23 12:35 touchscreen0 -> event1 

 Once received node, cat that node using below command, 

# cat /dev/input/touchscreen0 | hexdump 

 Touch on the screen and get the events on console to validate touch 
 

Play QT demo 
# /usr/share/videohmiapp-1.0/VideoHMIApplication  
# /usr/share/chemicalplanthmi-1.0/ChemicalPlantHMI  
 

For more details, see Section 21 and 22 (QT Demos Details). 
 

5. Mezzanine DSI Display Demo 
 Attach dsi display MX8_DSI_OLED to high-speed mezzanine connector. 

Play video on mezzanine DSI display 
  After verification on mezzanine connection with h/w, power up the board. 
 Go to board's console (require minicom) and immediately stop at u-boot autoboot 

console by pressing any key. 
 Apply below commands for changing dtb file  

# setenv fdt_file  fsl-imx8mq-thor96-dcss-rm67191-b3.dtb 
# saveenv 



# boot 
 Copy local sample_video.mp4 videos using scp command to on board sd card as 

mentioned in above demo. 
 Play above copied video on the OLED Display using below command  

# gst-launch-1.0 filesrc location= sample_video.mp4 typefind=true ! 
video/quicktime ! aiurdemux ! queue max-size-time=0 ! vpudec ! queue max-
size-time=0 ! autovideosink 
 

 
Figure 12 : iMX8M_Thor96 Platform Mezzanine DSI OLED 

6. Camera Demo 
  
 Live stream from camera on HDMI display 

 To watch live stream over the HDMI, connect HDMI Display. 
 Power up the board 
 Go to board's console (require minicom) and immediately stop at u-boot autoboot 

console by pressing any key. 
 Apply below commands for changing dtb file  

# setenv fdt_file  fsl-imx8mq-thor96-mipi-csi.dtb 
# saveenv 
# boot 

 Display will get blank and will be black only 
 Attach camera module to high-speed mezzanine on CSI2 connector. 
 Then apply below command 

# gst-launch-1.0 v4l2src device=/dev/video1 ! video/x-
raw,width=1280,height=720 ! kmssink 



 Attach camera module to high-speed mezzanine on CSI1connector. 
 Then apply below command 

# gst-launch-1.0 v4l2src device=/dev/video0 ! video/x-
raw,width=1280,height=720 ! kmssink 

 This will show live streaming over the attached HDMI for couple of minutes  

Note: Dual camera mode is not tested yet. Please perform above steps on single camera mode.  

Live stream from camera on HDMI1 display and local Video streaming on HDMI2(DSI-HDMI) 
 To watch live stream over the HDMI, connect HDMI Displays to HDMI1(J2) and 

HDMI2(j15) connector. 
 Attach camera module to high-speed mezzanine on CSI2 connector. 
 Power up the board 
 Go to board's console (require minicom) and immediately stop at u-boot autoboot 

console by pressing any key. 
 Apply below commands for changing dtb file  

# setenv fdt_file  fsl-imx8mq-thor96-dual-display-b3.dtb 
# saveenv 
# boot 

 Command to camera image on HDMI1 

# gst-launch-1.0 v4l2src device=/dev/video1 ! video/x-
raw,width=1280,height=720 ! kmssink 

 Command to play video on HDMI2.  

# gst-launch-1.0 -v filesrc location=sample_video.mp4  typefind=true ! 
video/quicktime ! aiurdemux ! queue max-size-time=0 ! vpudec ! waylandsink &   

 This will show live streaming over the attached HDMI for couple of minutes  

 
 Capture image from camera 
  

 Go to board's console (require minicom) and power up the board with above 
mentioned dtb change configuration. 

 Ensure Ethernet is plugged-in to get image from board to local x86 host pc. 
 Apply below command to capture image from camera. 

# gst-launch-1.0 v4l2src num-buffers=1 ! jpegenc ! filesink location= 
/home/root/test.jpg 

 Above command will capture image named test.jpg in /home/root/ location 
Copy image from board to local pc using below command 

# scp test.jpg <user name of host pc >@<ip of host pc>:/home/user/Desktop 
 Go to local pc's /home/user/Desktop and watch image into image viewer to verify 

captured image from board's camera. 
 



 

7. Audio Codec Demo 
 

 Go to board's console (require picocom) and power up. 

 Install picocom in host machine using below command. 
# sudo apt-get install picocom 

 After installing picocom open console use of below command 
# sudo picocom -b 115200  -r -l /dev/ttyUSB0 

 From the above command you will get the imx8mq thor96 board’s tty console 

 Type alsamixer command in console 

 Following screen will get on console. 
 

 
Figure 13 : Alsa Mixer Control Panel 

 

 Note: Above alsamixer command’s required settings are already set by default and 
user do not need to do anything to play or record audio. However, if user want to adjust 
volume or other setting then he/she can change settings based on his/her preferences.  

 You can select a different sound card by pressing F6. It will bring up a menu that shows 
the known sound cards on imx8mq thor96 system. 

 The default you see above is the “Playback” view. You can choose “Capture” by 
pressing F4 and “All” (which includes “Playback” and “Capture”) by pressing F5. Return 
to “Playback” with F3.Move right and left, respectively, through those options by 
pressing the Left and Right arrow keys. 

 Adjust each volume with Down to reduce the volume of a channel and Up to increase 
the volume. 

 You can mute and unmute any channel by pressing m. 



 To play and capture the audio you need to all setting must be unmute and gain of all 
channel are not to be zero. 

 After done all setting press ESC button to close alsamixer utility.  

 Enter below command to check the audio codec playback probed  
# aplay -l 

 find the below log from the list 
  adau1361audio [adau1361-audio], device 0: adau1x61 adau-hifi-0 [] 
  Subdevices: 1/1 
  Subdevice #0: subdevice #0 

 Enter below command to check audio codec capture driver probed 
# arecord -l 

 Find below logs from the list 
  adau1361audio [adau1361-audio], device 0: adau1x61 adau-hifi-0 [] 
  Subdevices: 1/1 
  Subdevice #0: subdevice #0 

 To playback audio enter below command    
# aplay -Dplughw:0,0 SAI1/sample.wav 

 To record audio enter below command 
# arecord -Dplughw:0,0 -f dat record.wav 

 To test playback with recording 
# arecord -Dplughw:0,0 -f dat | aplay -Dplughw:0,0 -f dat 

 

 

8. LTE Demo 
 

 Connect Quectel module with target board. 

 Go To Board’s console and apply below command 
# pppd call quectel-ppp &; 

 Edit /etc/resolv.conf as per below 
# nameserver 59.144.127.117 

# nameserver 59.144.144.46 

 Save above file and apply below command 
# ifconfig ppp0 

# ping www.google.com -I ppp0 

 Will be able to ping to google.com 
 



 

9. USB Hub demo  
 Connect USB device disk to USB port of target board 

 Go to board ‘s console and apply below command  
# lsusb 

 

 On Connecting usb pendrive 
usb 2-1.2: new SuperSpeed USB device number 4 using xhci-hcd 
usb-storage 2-1.2:1.0: USB Mass Storage device detected 
scsi host0: usb-storage 2-1.2:1.0 
scsi 0:0:0:0: Direct-Access     SanDisk  Ultra Fit        1.00 PQ: 0 ANSI: 6 
sd 0:0:0:0: [sda] 30031872 512-byte logical blocks: (15.4 GB/14.3 GiB) 
 

 On Disconnecting usb pendrive 
usb 2-1.2: USB disconnect, device number 4 

 

10. USB OTG as host 
 Power up the board 
 Go to board's console (require minicom) and immediately stop at u-boot autoboot 

console by pressing any key. 
 Apply below commands for changing dtb file  

# setenv fdt_file  fsl-imx8mq-thor96-otg-host.dtb 
# saveenv 
# boot 

 Once boot completes 

 Connect USB device disk to USB OTG port of target board 

 Go to board ‘s console and apply below command as same as USB hub 
lsusb 

 On Connecting usb pendrive 
usb 2-1.2: new SuperSpeed USB device number 4 using xhci-hcd 
usb-storage 2-1.2:1.0: USB Mass Storage device detected 
scsi host0: usb-storage 2-1.2:1.0 
scsi 0:0:0:0: Direct-Access     SanDisk  Ultra Fit        1.00 PQ: 0 ANSI: 6 
sd 0:0:0:0: [sda] 30031872 512-byte logical blocks: (15.4 GB/14.3 GiB) 

 On Disconnecting usb pendrive 
usb 2-1.2: USB disconnect, device number 4. 

 
 
 



11. USB OTG as Devices 
 

 Connect USB cable (same like debug uart cable) USB OTG port of target board 

 Run the below command 
# dd if=/dev/zero of=/mass_storage bs=1M seek=256 count=0 
# mkfs.fat /mass_storage  
# cat <<EOT | sfdisk --reorder  /mass_storage  
 ,,c 
 EOT 
# mkfs.vfat /mass_storage  
# chmod 777 /mass_storage  
# mount -o loop  /mass_storage /mnt/ 
# mount 
# modprobe  g_mass_storage file=/mass_storage  
 

 Disconnect and connect the USB cable 

 User will see the drive on host machine. 
 

 
Figure 14 : USB Mass Storage on HOST system 

 

Please note that on Window system mass storage been created but not seen the 
drive (although we have created FAT file system). Must be an issue with Windows 
system. Therefore, User need to test this with Linux system only. 



 

12. Bluetooth 
 

 Go to board ‘s console and apply below command  
# stty -F /dev/ttyUSB0 3000000 
# stty -F /dev/ttyUSB0 crtscts 
# hciattach /dev/ttyUSB0 bcm43xx 3000000 flow -t 20 
 

 Wait until the complete the command response 
# hciconfig hci0 up 
# hciconfig hci0 -a 
 

 User will get the hcio interface 

 Run the “bluetoothctl” utility 
#bluetoothctl 
[bluetooth]# power on 
[bluetooth]# agent on 
[bluetooth]# default-agent 
[bluetooth]# pairable on 
[bluetooth]# scan on 
 
Copy mac address 
 
[bluetooth]# scan off 
[bluetooth]# pair <mac address> 
 
Approve pairing on Device if required 
 
[bluetooth]# trust <mac address> 
[bluetooth]# connect <mac address> 
[bluetooth]# quit 
 

 Sending file command. 
#export $(dbus-launch) 
#/usr/libexec/bluetooth/obexd & 
 
#obexctl 
[obex]# connect <mac addr> 
[<mac addr>]# send <file> 
 
[<mac addr>]# disconnect 
[<mac addr>]# quit 

 

 Play the audio over BT commands 

 Collect the audio file from the support package folder. 

 Get the Bluetooth headset or Bluetooth speaker. 
# aplay -D bluealsa:HCI=hci0,DEV=<mac addr>,PROFILE=a2dp play_audio.wav 



 

 Get the Mobile headset,  

 Connect mobile with our modem using above bluetoothctl command. 

 play the music on mobile player 

 run below command to capture the audio from Bluetooth 
# arecord -D bluealsa:HCI=hci0,DEV=<mac addr>,PROFILE=a2dp 
record_audio.wav 

 copy recovered file in your host PC and verify with any player on host PC 
 
 
 
 

13. EEPROM 
 

 Run below command to test EEPROM  
# echo hello > /sys/bus/i2c/devices/i2c-1/1-0050/eeprom 
# cat /sys/bus/i2c/devices/i2c-1/1-0050/eeprom | hexdump -C  
 
 

14. Zigbee Demo 
 

Description: 

ZigBee 3.0 Gateway: 

ZigBee 3.0 provides a foundation of commissioning and network management 
mechanisms to be used in all ZigBee applications. The sample scenario presented here 
demonstrates the flexibility that the ZigBee 3.0 specification provides to applications. They 
also act as an excellent starting point for users wishing to build their own ZigBee 3.0 
applications. 

Z3Gateway, the gateway can form a centralized network, and the light and the switch can 
join the centralized network by performing network steering. 

The gateway provides CLI commands (application interface) to the user. User can create 
new zigbee network and can remove using such CLI command set.  

The CLI command "plugin network-creator start 1" create a centralized network. The 
gateway application can then be triggered to allow other zigbee devices connect to this 
network with the CLI command “plugin network-creator-security open-network". With 
this command we can create open-network where any reset zigbee device can join the 
network using the ZigBeeAlliance09 link key, or by manually entering the install code 
derived link key into the gateway using the CLI command "plugin network-creator-
security set-joining-link-key". The CLI command "plugin network-creator-security 
close-network" will close the network and no longer allow devices onto the gateway's 
network.  



 

 

Steps to test Zigbee as below: 

 Copy host zigbee application to device using scp command via Ethernet if it is not there  
on the board at path /home/root/zigbee/Z3GatewayHost . 

 Use below command to set executable flags for binary. 
# chmod 777 Z3GatewayHost 

 Make sure “zigbee” service is disable. User can check status of zigbee service by 
“systemctl status zigbee” 

 If Zigbee service is active running then disable it by “systemctl stop zigbee” and rename 
“/home/root/zigbee/Z3GatewayHost_HMI” to any other name. 

 Run Z3GatewayHost as below. (Please flash ncp-spi and bootloader if not flashed). Note 
for board, which are shipped are already flashed. 
 
# ./Z3GatewayHost 
 
[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] traceMask = 0xFF 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nHOST_INT device 75. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened SPI device /dev/spidev1.0. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nCS device 8. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nRESET device 132. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nWAKE device 74. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to 
/sys/class/gpio/export. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to 
/sys/class/gpio/export. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to 
/sys/class/gpio/export. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to 
/sys/class/gpio/export. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] traceMask = 0xFF 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nHOST_INT device 75. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened SPI device /dev/spidev1.0. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nCS device 8. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nRESET device 132. 

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nWAKE device 74. 

Reset info: 11 (SOFTWARE) 

ezsp ver 0x07 stack type 0x02 stack ver. [6.4.0 GA build 385] 



Ezsp Config: set source route table size to 0x0064:Success: set 

Ezsp Config: set security level to 0x0005:Success: set 

Ezsp Config: set address table size to 0x0002:Success: set 

Ezsp Config: set TC addr cache to 0x0002:Success: set 

Ezsp Config: set stack profile to 0x0002:Success: set 

Ezsp Config: set MAC indirect TX timeout to 0x1E00:Success: set 

Ezsp Config: set max hops to 0x001E:Success: set 

Ezsp Config: set tx power mode to 0x8000:Success: set 

Ezsp Config: set supported networks to 0x0001:Success: set 

Ezsp Policy: set binding modify to "allow for valid endpoints & clusters only":Success: set 

Ezsp Policy: set message content in msgSent to "return":Success: set 

Ezsp Value : set maximum incoming transfer size to 0x00000052:Success: set 

Ezsp Value : set maximum outgoing transfer size to 0x00000052:Success: set 

Ezsp Config: set binding table size to 0x0010:Success: set 

Ezsp Config: set key table size to 0x0000:Success: set 

Ezsp Config: set max end device children to 0x0020:Success: set 

Ezsp Config: set aps unicast message count to 0x000A:Success: set 

Ezsp Config: set broadcast table size to 0x000F:Success: set 

Ezsp Config: set neighbor table size to 0x0010:Success: set 

NCP supports maxing out packet buffers 

Ezsp Config: set packet buffers to 255 

Ezsp Config: set end device poll timeout to 0x0005:Success: set 

Ezsp Config: set end device poll timeout shift to 0x0006:Success: set 

Ezsp Config: set zll group addresses to 0x0000:Success: set 

Ezsp Config: set zll rssi threshold to 0xFF80:Success: set 

Ezsp Config: set transient key timeout to 0x00B4:Success: set 

Ezsp Endpoint 1 added, profile 0x0104, in clusters: 8, out clusters 19 

Ezsp Endpoint 242 added, profile 0xA1E0, in clusters: 0, out clusters 1 

Found 0 files 

Z3GatewayHost>network leave  

leave 0x70 

 

Z3GatewayHost>  plugin network-creator start 1 



NWK Creator Security: Open network: 0x01 

Z3GatewayHost> plugin network-creator-security open-network 

NWK Creator: Form: 0x00 

NWK Creator Security: Start: 0x00 

NWK Creator: Form. Channel: 20. Status: 0x00 

NWK Creator: Stop. Status: 0x00. State: 0x00 

EMBER_NETWORK_UP 0x0000 

 

Now turn on a zigbee end device and it will be start broadcasting, will connect above 
network, and on host side below log will occur.   

Z3GatewayHost>Trust Center Join Handler: status = UNsecured join, decision = use preconfigured key (00), 
shortid 0x2229 

T0000007E:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 00 cmd 01 payload[] 

T0000007E:RX len 4, ep 01, clus 0x0500 (IAS Zone) FC 08 seq 00 cmd 04 payload[00 ] 

T0000007F:RX len 15, ep 01, clus 0x0500 (IAS Zone) FC 08 seq 01 cmd 01 payload[10 00 00 F0 16 BC 1E 
FE FF 9F FD 90 ] 

T0000007F:RX len 12, ep 01, clus 0x0019 (Over the Air Bootloading) FC 01 seq 01 cmd 01 payload[00 31 
11 24 10 21 51 00 23 ] 

QueryNextImageRequest mfgId:0x1131 imageTypeId:0x1024, fw:0x23005121 

T0000007F:RX len 20, ep 01, clus 0x0500 (IAS Zone) FC 08 seq 02 cmd 01 payload[00 00 00 30 00 01 00 
00 31 15 00 02 00 00 19 20 00 ] 

T0000008F:RX len 7, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 02 cmd 01 payload[15 00 31 11 ] 

Sent enroll response with responseCode: 0x00, zoneId: 0x00, status: 0x00 

 

        Below log is for door sensor device which indicates open<24> and close<25>:  

T00000092:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 03 cmd 00 payload[24 00 00 00 00 00 ] 

T0000009A:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 04 cmd 00 payload[25 00 00 00 00 00 ] 

T000000A0:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 05 cmd 00 payload[24 00 00 00 00 00 ] 

T000000A2:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 06 cmd 00 payload[25 00 00 00 00 00 ] 

T000000A5:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 07 cmd 00 payload[24 00 00 00 00 00 ] 

T000000A7:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 08 cmd 00 payload[25 00 00 00 00 00 ] 

T000000A8:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 09 cmd 00 payload[24 00 00 00 00 00 ] 

T000000A9:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 0A cmd 00 payload[25 00 00 00 00 00 ] 

T000000B2:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 0B cmd 00 payload[21 00 00 00 00 00 ] 

T000000B4:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 0C cmd 00 payload[25 00 00 00 00 00 ] 

T000000C4:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 0D cmd 01 payload[] 

T000000C8:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 0E cmd 01 payload[] 



15. Thread Demo 
Description:  

Client/Server Sample Applications 

The client and server applications demonstrate basic Thread network functionality for a 
wireless sensor network.  This server application acts as a data sink and collects 
information from client nodes that act as sensors.  The client and server communicate 
using the Constrained Application Protocol (CoAP) at the application layer, with UDP 
serving as the transport layer.  The Silicon Labs Thread stack provides CoAP and UDP. 

At startup, the server will automatically start network operations.  If the node is starting for 
the first time, it will form a new network called "client/server."  If it had already formed a 
network previously, it will simply resume network operations using the network parameters 
stored in non-volatile memory in the stack.  After forming or resuming, the application 
establishes itself as the commissioning device of the network.  This means the server is 
responsible for allowing other devices to join the network. 

The server sends advertisement messages to the network at regular intervals using 
multicast transmission.  The advertisements, sent as CoAP POST requests to the 
"server/advertise" URI, inform clients in the network about the presence of the server.  
When a client without a server receives the advertisement, it will begin sending sensor 
data to the server.  Sensor data are sent as CoAP POST requests to the "client/report" 
URI, and are unicast directly to the server.  In these examples, the sensor data are the 
current temperature, as provided by the temperature sensor on the development board of 
the client nodes. 

Before attempting to join the network, the client nodes print their unique join key to the 
console.  This key must be provided to the commissioner (i.e., the server) before the client 
will be able to join the network.  For example, when joining, the client will display a 
message such as: 

 

Joining network "client/server" with EUI64 >0134047823560034 and join key "174F5B07" 

In this example, "174F5B07" is the unique join key for the client and 0134047823560034 
is the EUI64 of the client.  The join key can be provided to the server and joining can be 
enabled via the following CLI command: 

expect "174F5B07" 

If the EUI64 of the client is known, it can be specified in order to further assist in joining 
the correct node: 

expect "174F5B07" \\{0134047823560034\\} 

It is important to note that each client will have a different join key.  It is essential that the 
server be informed of the exact join key used by the client.  If the join key is not provided 
to the server, or if an incorrect key is provided, the client will not be able to join. The server 
host sample application can communicate with the NCP using either SPI or UART.  With 
SPI, the spi-server and ip-driver-app utility programs are used to interact with the NCP.  



With UART, only the ip-driver-app utility program is used.  spi-server will run itself in the 
background.  ip-driver-app runs in the foreground by default, but it can be run in the 
background using shell job control features.  

 
Steps to test thread as below: 
 
Server Host appliation. 

 move to directory path /home/root/thread/imx_host_apps/ 
      # cd thread/imx_host_apps/ 
      # cd spi-server 

 Run spi_server.sh script with required parameter.  
 # ./spi-server.sh 4951 spidev1.0 75 132 74 0xFF 8 --nolog & 

      # cd ../ 

 Run ip-driver-app  
  # ./ip-driver-app -s -u 4951 -t tun0 -m 4901 & 

Run host server application as below.(Please flash ncp-spi for thread and bootloader if  
not flashed). For join key which is unique for each client we need to run client application 
and get it from their. Please see Client log in next section. 
 
 # ./server-host -m 4901     
    
Reset info: 0x0B (SOFTWARE) 
Removing any IPv6 addresses configured on the host... 
Init: 0x00 
Resuming operation on network "client/server" 
[2018-12-05 13:41:19.036 +   0.002] [app->driver->NCP ] [MGMT] [016907] 
                                    [NCP->driver mgmt ] [MGMT] 
[01630207546872656164000F0028000181031544656320323020323031382031363A35
303A353800] 
[2018-12-05 13:41:19.037 +   0.001] [driver->app ] [MGMT] 
[01630207546872656164000F0028000181031544656320323020323031382031363A35
303A353800] 
Host: Thread 2.7.1.0 GA build 245 management 3840 (Nov  6 2018 14:38:44) 
NCP:  Thread 2.8.0.0 GA build 385 management 3840 (Dec 20 2018 16:50:58) 
[2018-12-05 13:41:19.080 +   0.043] [NCP->driver mgmt ] [MGMT] 
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B5] 
                                    [driver->app ] [MGMT] 
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B509BE6] 
[2018-12-05 13:41:19.081 +   0.001] [NCP->driver mgmt ] [MGMT] 
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A] 
                                    [driver->app ] [MGMT] 
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A7EC18] 
[2018-12-05 13:41:19.082 +   0.001] [NCP->driver mgmt ] [MGMT] [016375050100] 
                                    [driver->app ] [MGMT] [016375050100] 
                                    [NCP->driver mgmt ] [MGMT] [01630C00] 



                                    [driver->app ] [MGMT] [01630C00] 
                                    [NCP->driver mgmt ] [MGMT] 
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B5] 
                                    [driver->app ] [MGMT] 
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B509BE6] 
[2018-12-05 13:41:19.083 +   0.001] [NCP->driver mgmt ] [MGMT] 
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A] 
                                    [driver->app ] [MGMT] 
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A7EC18] 
 
[2018-12-05 13:41:20.563 +   1.480] [NCP->driver mgmt ] [MGMT] 
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B5] 
[2018-12-05 13:41:20.564 +   0.001] [driver->app ] [MGMT] 
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B509BE6] 
[2018-12-05 13:41:20.567 +   0.003] [NCP->driver mgmt ] [MGMT] 
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A] 
[2018-12-05 13:41:20.568 +   0.001] [driver->app ] [MGMT] 
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A7EC18] 
                                    [NCP->driver mgmt ] [MGMT] [016375050500] 
                                    [driver->app ] [MGMT] [016375050500] 
 
Bound to fde1:85ac:b16e:0:2f36:83f4:774:df19 
Bound to fe80::ad18:eca7:e69b:505b 
Resumed operation on network "client/server" 
Becoming commissioner "server" 
Became commissioner 
Using the following thread multicast addresses: 
ff32:40:fde1:85ac:b16e::1 
ff33:40:fde1:85ac:b16e::1 
 
Advertising to ff33:40:fde1:85ac:b16e::1 
[2018-12-05 13:43:36.660 +  60.184] [IP stack->driver->NCP ] [DATA] 
[60001641001F110AFDE185ACB16E00002F3683F40774DF19FF330040FDE185ACB1
6E00000000000116331633001F542F5202544CB8] 
[2018-12-05 13:43:36.668 +   0.008] [NCP->driver->IP stack ] [DATA] 
[60001641001F110AFDE185ACB16E00002F3683F40774DF19FF330040FDE185ACB1
6E00000000000116331633001F542F5202544CB8] 
 
server-host> help 
Usage notes: 
type      description 
<uint8_t>   8-bit unsigned int, eg: 255, 0xAB 
<int8_t>   8-bit signed int, eg: -128, 0xA9 



<uint16_t>  16-bit unsigned int, eg: 3000 0xFFAA 
<string>  A string, eg: "foo" or {0A 1B 2C} 
*         Zero or more of the previous type 
advertise 
bootloader... 
coap... 
coaps... 
exit 
expect <string> <string> * 
help 
icmp... 
info 
network-management... 
reset 
udp... 
versions 
server-host> expect "GHHFBM02" 
 
Sent steering data 
 
[2018-12-05 13:48:37.980 +   0.167] [IP stack->driver->NCP ] [DATA] 
[600A612D000C1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000C02D66000FB81] 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
[2018-12-05 13:48:38.081 +   0.101] [IP stack->driver->NCP ] [DATA] 
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E197E6244FB83E7] 
 
[2018-12-05 13:48:48.227 +  10.146] [NCP->driver->IP stack ] [DATA] 
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F0634202FB84E7] 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
[2018-12-05 13:48:48.260 +   0.033] [IP stack->driver->NCP ] [DATA] 
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E197C6244FB84E7] 
 
[2018-12-05 13:48:58.406 +  10.146] [NCP->driver->IP stack ] [DATA] 
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F0614202FB85E7] 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
[2018-12-05 13:48:58.440 +   0.034] [IP stack->driver->NCP ] [DATA] 
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E197A6244FB85E7] 
 
[2018-12-05 13:49:08.585 +  10.145] [NCP->driver->IP stack ] [DATA] 
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F05F4202FB86E7] 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
[2018-12-05 13:49:08.619 +   0.034] [IP stack->driver->NCP ] [DATA] 
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E19786244FB86E7] 



 
[2018-12-05 13:49:18.765 +  10.146] [NCP->driver->IP stack ] [DATA] 
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F05B4202FB88E7] 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
[2018-12-05 13:49:18.799 +   0.034] [IP stack->driver->NCP ] [DATA] 
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E19746244FB88E7] 
 
[2018-12-05 13:49:28.945 +  10.146] [NCP->driver->IP stack ] [DATA] 
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F0594202FB89E7] 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
 
Client Host application:  
 
For Client application, please use a ThunderBoard and flash images from 
ThunderBoard_Bootloader_client. When board is up and will be able to see console.  
client> join 
client> Joining network "client/server" with EUI64 >90FD9FFFFE5FD1DD and join key 
"GHHFBM02" 
ERR: Joining failed: 0x02 
 
client> Joined network "client/server" 
Waiting for an advertisement from a server 
Attached to server at fde1:85ac:b16e:0:2f36:83f4:774:df19 
Reporting 43000 to server at fde1:85ac:b16e:0:2f36:83f4:774:df19 
Reporting 43000 to server at fde1:85ac:b16e:0:2f36:83f4:774:df19 
 
When server uses join key “GHHFBM02” and excepts it as it’s client then client will 
send some data acting as a sensor and Server will receive logs for client sending 
data  and server receiving is as below:  
Client :  
Reporting 43000 to server at fde1:85ac:b16e:0:2f36:83f4:774:df19’ 
Server: 
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c 
  
Note:  Please refer Flash Document (FlashDocument.pdf) for the steps to flash. 

 
 

16. USER LED  
 Run the below command to control the Led 
 

 BT_LED 
# echo 96 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio96/direction  
# cat /sys/class/gpio/gpio96/value  
# echo 1 > /sys/class/gpio/gpio96/value  

 



 WIFI_LED 
# echo 97 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio97/direction  
# cat /sys/class/gpio/gpio97/value  
# echo 1 > /sys/class/gpio/gpio97/value  

 
 LED_1 
# echo 117 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio117/direction  
# cat /sys/class/gpio/gpio117/value  
# echo 1 > /sys/class/gpio/gpio117/value  

 
 LED_2 
# echo 118 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio118/direction  
# cat /sys/class/gpio/gpio118/value  
# echo 1 > /sys/class/gpio/gpio118/value  

 
 LED_3 
# echo 124 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio124/direction  
# cat /sys/class/gpio/gpio124/value  
# echo 1 > /sys/class/gpio/gpio124/value  

 
 LED_4 
# echo 125 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio125/direction  
# cat /sys/class/gpio/gpio125/value  
# echo 1 > /sys/class/gpio/gpio125/value 

 

 

17. Low Power Expansion GPIO 
 

 Run the below command to control the Led 
 

 LS_GPIO2_A 
# echo 42 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio42/direction  
# cat /sys/class/gpio/gpio42/value  
# echo 1 > /sys/class/gpio/gpio42/value  
# echo 0> /sys/class/gpio/gpio42/value  

 
 LS_GPIO2_B 
# echo 43 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio43/direction  
# cat /sys/class/gpio/gpio43/value  



# echo 1 > /sys/class/gpio/gpio43/value  
# echo 0 > /sys/class/gpio/gpio43/value  

 
 

 LS_GPIO3_C 
# echo  88 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio88/direction  
# cat /sys/class/gpio/gpio88/value  
# echo 1 > /sys/class/gpio/gpio88/value  
# echo 0 > /sys/class/gpio/gpio88/value  

 
 LS_GPIO3_D 
# echo 84 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio84/direction  
# cat /sys/class/gpio/gpio84/value  
# echo 1 > /sys/class/gpio/gpio84/value  
# echo 0 > /sys/class/gpio/gpio84/value  

 
 

 LS_GPIO2_E 
# echo  39  > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio39/direction  
# cat /sys/class/gpio/gpio39/value  
# echo 1 > /sys/class/gpio/gpio84/value  
# echo 0 > /sys/class/gpio/gpio84/value  

 
 
 
 

 LS_GPIO3_F 
# echo 85 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio85/direction  
# cat /sys/class/gpio/gpio85/value  
# echo 1 > /sys/class/gpio/gpio85/value 
# echo 0 > /sys/class/gpio/gpio85/value 

  

 LS_GPIO2_G 
# echo 40 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio40/direction  
# cat /sys/class/gpio/gpio40/value  
# echo 1 > /sys/class/gpio/gpio40/value  
# echo 0 > /sys/class/gpio/gpio40/value  

 
 LS_GPIO3_H 
# echo 86 > /sys/class/gpio/export  



# echo out > /sys/class/gpio/gpio86/direction  
# cat /sys/class/gpio/gpio86/value  
# echo 1 > /sys/class/gpio/gpio86/value  
# echo 0 > /sys/class/gpio/gpio86/value  

 
 LS_GPIO3_I 
# echo 76 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio76/direction  
# cat /sys/class/gpio/gpio76/value  
# echo 1 > /sys/class/gpio/gpio76/value  
# echo 0 > /sys/class/gpio/gpio76/value  

 
 LS_GPIO1_J 
# echo 77 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio77/direction  
# cat /sys/class/gpio/gpio77/value  
# echo 1 > /sys/class/gpio/gpio77/value  
# echo 0 > /sys/class/gpio/gpio77/value 
 
 LS_GPIO3_K 
# echo 5 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio5/direction  
# cat /sys/class/gpio/gpio5/value  
# echo 1 > /sys/class/gpio/gpio5/value  
# echo 0 > /sys/class/gpio/gpio5/value  

 
 LS_GPIO1_L 
# echo 3 > /sys/class/gpio/export  
# echo out > /sys/class/gpio/gpio3/direction  
# cat /sys/class/gpio/gpio3/value  
# echo 1 > /sys/class/gpio/gpio3/value 
# echo 0 > /sys/class/gpio/gpio3/value 

 
 

18. CAN Interface demo 
 CAN interface can be tested by communicating between two boards. 
 Connect two boards with supplied CAN cable. 
 Enable CAN in both the boards with below command with board’s console. 

# ip link set can0 type can bitrate 125000;ifconfig can0 up  

 Configure one board as receiver as below command. 

# candump can0 & 

 Configure another board as sender and send data using below command 

# cansend can0 18FC2A00#0100000000000000 



 Observe on receiver side board receiving data  
 
 

19. NOR Flash demo 
 Go to Board’s console and create text file and write some data into it by below 

command 

# vi write.txt 

 Once done writing save and quit the above file by below command. 
# <ESC><:><wq>  

 Check for the  Nor flash node by below command 

# ls -l /dev/mtd0 

 Erase NOR flash using below command 

# flash_eraseall /dev/mtd0 

 Write the created file into NOR flash using below command. 

# time dd if=write.txt of=/dev/mtd0 

 Read from NOR flash from the same location  

# dd if=/dev/mtd0 of=read.txt 

# cat read.txt 

 Compare the read.txt, it should be same as write.txt  

 Please note that, when we write data, we write only a few bytes of data. However, when 
we read, we read the whole partition instead of the initial few lines. Due to that, we 
see junk characters in the place where we did not write anything. So user need to read 
the file at very first few lines using vim and verify its data. 
 

 

20. Wi-Fi Demo 
 Open terminal and follow the below commands to run Wi-Fi demo 

# ip link show wlan0 

3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode 
DEFAULT group default qlen 1000 
    link/ether 00:25:ca:14:11:6c brd ff:ff:ff:ff:ff:ff 
 

 Edit /etc/wpa_supplicant.conf file as per below in target board using vi  

# vi /etc/wpa_supplicant.conf 

 Add following contains in /etc/wpa_supplicant.conf and save it. 



ctrl_interface=/var/run/wpa_supplicant 

ctrl_interface_group=0 
update_config=1 
 

network={ 
ssid="closenet" 
scan_ssid=1 
key_mgmt=WPA-PSK 
psk="123456789" 
} 
 

• Turn on hotspot from mobile device or from Router. 
• Change its ssid name /Network name to “closenet” and password to "123456789" 

(Create Close network). Make sure Security Type must be WPA-PSK or WPA2-PSK. 
 
Note: User can select any name (ssid) and password (psk) except any space or 
special character here and can change above wpa_supplicant.conf file accordingly. 
For example, ssid “Anil’s iPhone” is not valid one. 
 
# wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf 
# iw wlan0 link 
# ip address list wlan0 
# udhcpc -i wlan0 -n -q 
# ip address list wlan0 
# ip route show 
# ping <Any network ip > 
 

 Response should be as per below logs 
 
PING 192.168.43.1 (192.168.43.1) 56(84) bytes of data. 
64 bytes from 192.168.43.1: icmp_seq=1 ttl=64 time=12.6 ms 
64 bytes from 192.168.43.1: icmp_seq=2 ttl=64 time=10.6 ms 
64 bytes from 192.168.43.1: icmp_seq=3 ttl=64 time=27.7 ms 
64 bytes from 192.168.43.1: icmp_seq=4 ttl=64 time=6.34 ms 
64 bytes from 192.168.43.1: icmp_seq=5 ttl=64 time=22.8 ms 
64 bytes from 192.168.43.1: icmp_seq=6 ttl=64 time=8.26 ms 

 The above ping response validates Wi-Fi’s working state 

 

 

21. QT Chemical Plant demo 
Description:  

This demo is the showcase for chemical plant and it demonstrate how we can control 
chemical plant through GUI using QT application. Here for reference we use three different 



chemical liquids with Tank1, Tank2 and Tank3.  In practical, they may be less or more. 
Accordingly, we can change our GUI application.  

Mixture Tank (at bottom in image) contains the mixture of different chemical liquid (Tank1, 
Tank2, Tank3). We give heat to mixture for product output at desired temperature. Mixture 
Tank Temperature shows current Mixture Tank temperature with Thermometer. We also 
added Mixture Tank Temperature Graph at the top-left corner for graphical 
representation of Mixture Tank Temperature with reference to timescale. We also added 
Mixture Tank FAN to demonstrate Mixture Tank filling process. FAN is running when we 
filling into mixture tank and stop when filling is done and mixture tank is empty. 

 

 

Figure 15 : QT Chemical Plant 

 

Every Tank have its own Tank Control Menu to operate that tank. Each Tank Control 
Menu contains Tank Level, Tank Status, Tank Filling Motor Control, Tank Pump 
Control etc. Pump Motor or Tank Filling Motor is useful to fill liquid into respective Tank. 
Pump Motor START button will start fill that Tank and STOP button will stop filling it. When 
filling liquid is in progress respective filters (black/white circular shape) above the Pump 
will rotate and display progress. We also have Pump START and STOP button. It is useful 
for filling liquid from Tank to Mixture Tank. (It will empty respective Tank and fill into Mixture 
Tank.)  Filter below pump will show progress for this. 

Tank Level (inside control menu) display liquid level inside that Tank. Each Tank has its 
own Tank level and we can see all this level on Tank’s Level Graph.  Tank’s Level Graph 
shows liquid level for each Tank as well as Mixture Tank level. 



Tank Status (inside control menu) show status of the pump. Its shows “Close” status with 
RED LED when pump is not working (in action) and shows “Open” with Green LED when 
we run that pump to fill mixture tank. 

We also added Control settings for events, settings, alarms and helps. In addition, there 
are two modes (Auto Mode and Manual Mode) to run the demo. 

 

Steps to run Demo: 

 Run command:  
# /usr/share/chemicalplanthmi-1.0/ChemicalPlantHMI 

 Click on “Auto” Plant mode 
It will run demo in auto mode. In auto mode, all tanks liquid is falling into mixture 
tank. So first all tank level is decrease to zero gradually and mixture tank level is 
increasing. After all tanks are empty, we start filling them again and at the same 
time, we remove mixture tank product. 

 Click on “Manual” Plant Mode. 
Now User has all access to start and stop pump manually.  
 
Based on mixture and all tank data, graphs data also changing in both modes. 
 

 

Figure 16 : Running Chemical Plant demo 

 



As we can see in above figure 16 that, when we run demo in auto mode first Tank-1 
level is decreasing (48 in above figure) and respectively mixture value is increasing. 

 

22.  QT Video HMI Application demo 
 

Steps to run demo:  

# /usr/share/videohmiapp-1.0/VideoHMIApplication 

 

Description:  

This demo is the showcase for displaying any plant or production room’s conditions and 
monitoring them. Here for reference we use four different production rooms with Room-1, 
Room-2, Room-3 and Room-4.  In practical, they may be less or more. Accordingly, we 
can change our GUI application. 

Figure 17 shows home screen of Video application. On default screen, we read real time 
room temperature and display on main screen. In addition, we capture same temperature 
log in Temperature graph as well with four different colors. (Shown at bottom) 

 

 

Figure 17 : HMI Video Application 

 



We can also define temperature range here. For example, 0 to 60 where 0 is minimum 
and 60 is maximum acceptable temperature. When room’s temperature goes beyond the 
acceptable range, demo app will play the alarm sound and room‘s temperature 
notification label color change blue to red with maximum or minimum notification. 
In figure 17, we can see that Room-1 temperature (60 C) is beyond maximum limit (50 C) 
so label color is RED. 

Here we get Room temperature data from CSV file. However, in actual, we can get data 
from different temperature sensors. Therefore, we will get real time data. 

 

Figure 18 : Running multiple video files 

 

As shown in below Figure 18 and figure 19, we can also run multiple video files and camera 
streaming on Room Camera Screen. For that first User need to click on Room Camera 
tab on top left corner. It will display media player through which we can open any video 
file. Open button (in media player) is useful to browse and open video file. After opening, 
we can play video by PLAY button (symbolic). We can also pause running video by 
PAUSE (symbolic) button. URL Button is useful for live streaming. User need to give RTSP 
stream video command to live streaming. (Figure 19) 



 

Figure 19 : Live Camera Streaming over RTSP 

On Right – Top Corner, we have different Screen selection option. By default, default 
screen is selected, but user can go to particular camera screen to monitor that Room. For 
example, user can select Room-1 to monitor Room-1 condition. (Figure 20) 

As shown in Figure 20,  only Room-1 information is displayed. We can live stream or play 
video for room -1 only. Also temperature graph show only Room-1 data.  

Select Date (on right top) widget is useful for displaying all room’s temperature on graph 
based on between start date-time and end date time.  User can select data and time by  
Clicking Calendar button just right after start data-time and end date-time text area. 
(Figure 21) 
As shown in Figure 22, based on selected date and time we show Temperature History 
graph. 



 

Figure 20 : Room-1 Screen 

 

 
Figure 21 : Select DATE-TIME 



 

Figure 22 : Temperature History based on selected time 

 

We also have following Controls (at Right-bottom side): 
1) Settings: 
    Not implement. 
2) Data on cloud 
    Not implement.     
3) Temperature Setting: (Figure 23) 

 Open the room’s temperature setting pop-up window. 
 It is useful for set minimum or maximum room’s temperature based on selection 

of rooms. 
 4) Data History: (Figure 24) 

 Open the window with table and graph. 
Data History Table: 
Display minimum or maximum temperature of the rooms with date and time. 

 
 



 

Figure 23 : Room Temperature Limit setting 



 

Figure 24 : Data History Screen 

Data History graph: 
Display history of all the room’s temperature on the graph. 
5) Alarm 
 Not implement 
6) Helps 

 
NOTE:  Some of the QT features (like calendar widget closing) are not working fine in board due 
to X-WAYLAND platform dependency. It is QT’s limitation that it will not work fine in WAYLAND 
and needed EGLFS Platform. In addition, QT media player video play sluggish. All this limitation 
not observed on x86 Machine with same QT code. 

 
 

23. Alexa Demo 
We have prepared Alexa demo to showcase Board ZigBee capability. For that we have add 
support for ZIGBEE service, apache2 with cgi-bin and SSL, mosquito, php. Kindly go through 
Alexa_User_Guide_v0.1 user guide. 

Alexa_User_Guide_v
0.1.docx  



 

 

24. A2B Demo 
Our board have A2B capability where we can connect multiple A2B devices using evaluation 
boards. Here we demonstrate simple one device A2B demo to display A2B capability. 

To perform A2B demo we need the EVAL-AD2428WB1BZ board, audio Aux cable, A2B Cable and 
Earphone.  

Headphone is connect to J10 connector of Thor96 board. A2B cable is connected between Thor96 
board J20 and EVAL-AD2428WB1BZ board J7. 

Audio source input (Mobile) given to LINEIN port of EVAL_AD2428WB1BZ board through Aux 
cable. Aux cable is connected between mobile and LINEIN (J2) of EVAL-AD2428WB1BZ board. 

Now, play the song in mobile and listen it on headphone. Please see figure 25 for more details.  

 

Figure 25 : A2B Demo Setup 

 Download and Copy the A2B_demo_source.tar.gz file into thor96 board's home 
(/home/root/) directory. 

 Extract A2B_demo_source.tar.gz file  
# tar -xvzf A2B_demo_source.tar.gz 

 Go to desire path and apply below command to short terminal console path 

# cd /home/root/Target/examples/demo/a2b-linux/a2b-adsp-sc584-
linux/Makefiles 

# PS1='[\A]\u:\W>' 

 Download and Copy asound.state file to board. Apply below command to enable alsa 
control setting in ADAU1361 codec. 



# alsactl --file ~/asound.state restore 0 

 Apply below command to enable the sync clock for A2B trans-receiver  

# arecord -Dplughw:1,0 -f S32_LE -r 48000 -c 2 | aplay -Dplughw:0,0 -f S32_LE -r 
48000 -c 2 & 

 Apply below command to discover and start the playback path in network the slave 
code in network 

# ./staging/bin/a2bapp-linux –d 

 Connect the audio source AUX cable in slave device's LINE_IN port and listen the 
sound on thor96 board's J10 (HP) port.  

 

NOTE:  A2B_demo_source.tar.gz file contains A2B user space code, which is only for Arrow and 
einfochips internal testing purpose. This source code is ANALOG proprietary code and it must not be 
share without permission of Analog in any case. 

 

KNOWN ISSUES AND LIMITATIONS 
 

 Please refer the Release note V2.1 
 

CONTACT US 
 

For any queries related to product, please contact us at arrow.imx8hmi@einfochips.com 

 


