

Firmware User Manual
iMX8M THOR96 Reference Design

Version

Status

Date

ProdV2.1

Baseline

19-Aug-2019

Confidentiality Notice
Copyright (c) 2019 eInfochips. - All rights reserved
This document is authored by eInfochips and is eInfochips intellectual property, including the copyrights in all countries in
the world. This document is provided under a license to use only with all other rights, including ownership rights, being
retained by eInfochips. This file may not be distributed, copied, or reproduced in any manner, electronic or otherwise,
without the express written consent of eInfochips

Contents
Contents ... 2

Document Details.. 5

 Document History ... 5

 Definition, Acronyms and Abbreviations .. 5

 References .. 6

Introduction .. 7

 Purpose of the document ... 7

 About the System .. 7

 Before You Start .. 8

 Steps to build Yocto Image ... 8

 Get the firmware package .. 10

 Flash the firmware image to SD Card ... 10

 Hardware Installation ... 10

 Open board's terminal- console (minicom) on x86 host pc .. 11

Running-Demos ... 12

1. Ethernet demo .. 12

2. HDMI Demo... 12

3. Dual Display Demo .. 13

4. HDMI2 Touch Panel Demo .. 19

5. Mezzanine DSI Display Demo .. 20

6. Camera Demo ... 21

7. Audio Codec Demo ... 23

8. LTE Demo .. 24

9. USB Hub demo .. 25

10. USB OTG as host .. 25

11. USB OTG as Devices .. 26

12. Bluetooth .. 27

13. EEPROM .. 28

14. Zigbee Demo ... 28

15. Thread Demo .. 32

16. USER LED ... 36

17. Low Power Expansion GPIO .. 37

18. CAN Interface demo .. 39

19. NOR Flash demo .. 40

20. Wi-Fi Demo ... 40

21. QT Chemical Plant demo ... 41

22. QT Video HMI Application demo .. 44

23. Alexa Demo ... 50

24. A2B Demo ... 51

Known Issues and Limitations ... 52

Contact US ... 52

Figures

Figure 1 : iMX8M Thor96 Platform Connectors ... 7
Figure 2 : Thor96 Platform UART Connections ... 11
Figure 3 : Edit network connection .. 14
Figure 4 : Create Static network .. 15
Figure 5 : Start Network Stream in VLC .. 15
Figure 6 : Add Video file for RTSP stream ... 16
Figure 7 : Verify Video details .. 16
Figure 8 : Select RTSP option .. 17
Figure 9 : Provide video stream name .. 17
Figure 10 : Select Video codec ... 18
Figure 11 : Start Network Streaming ... 18
Figure 12 : iMX8M_Thor96 Platform Mezzanine DSI OLED ... 21
Figure 13 : Alsa Mixer Control Panel .. 23
Figure 14 : USB Mass Storage on HOST system ... 26
Figure 15 : QT Chemical Plant ... 42
Figure 16 : Running Chemical Plant demo .. 43
Figure 17 : HMI Video Application ... 44
Figure 18 : Running multiple video files .. 45
Figure 19 : Live Camera Streaming over RTSP .. 46
Figure 20 : Room-1 Screen .. 47
Figure 21 : Select DATE-TIME ... 47
Figure 22 : Temperature History based on selected time .. 48
Figure 23 : Room Temperature Limit setting ... 49
Figure 24 : Data History Screen ... 50
Figure 25 : A2B Demo Setup ... 51

Tables
Table 1 : Documents History .. 5
Table 2 : Description of Changes .. 5
Table 3 : Definition, Acronyms and Abbreviations .. 6
Table 4 : References ... 6

DOCUMENT DETAILS
 Document History

Version

Author Reviewer Approver

Name
Date

(DD-MM-
YYYY)

Name
Date

(DD-MM-
YYYY)

Name
Date

(DD-MM-
YYYY)

0.1 Rutvij
Trivedi

17-Dec-2018 Prajose
John

17-Dec-
2018

Bhavin
Patel

17-Dec-2018

0.2 Rutvij
Trivedi

21-Dec-2018 Prajose
John

21-Dec-
2018

Bhavin
Patel

21-Dec-2018

0.3 Anil Patel 10-Jan-2019 Prajose
John

10-Jan-
2019

Bhavin
Patel

10-Jan-2019

0.4 Anil Patel 22-Feb-2019 Prajose
John

22-Feb-
2019

Bhavin
Patel

22-Feb-2019

Beta1.0 Sandeep
Yenugula

25-MARCH-
2019

Prajose
John

26-MARCH-
2019

Bhavin
Patel

26-MARCH-
2019

Beta1.1 Anil Patel 25-Apr-2019 Prajose
John

25-Apr-
2019

Bhavin
Patel

25-Apr-2019

Prod 2.0 Anil Patel 15-July-2019 Prajose
John

15-July-
2019

Bhavin
Patel

15-July-2019

Prod 2.1 Anil Patel 16-Aug-2019 Prajose
John

19-Aug-
2019

Bhavin
Patel

19-Aug-2019

Table 1 : Documents History

Version Description Of Changes

0.1 initial draft
0.2 Added new features as mentioned in release note 0.2
0.3 Added QT demos and new features as mentioned in release note 0.3
0.4 Added Alexa Demo

Beta1.0 Added Beta related changes
Beta1.1 Added steps to build Yocto image
Prod2.0 Added A2B Demo
Prod2.1 Update QT based demos

Table 2 : Description of Changes

 Definition, Acronyms and Abbreviations

Definition/Acronym/Abbreviation Description

Cd Change directory
scp Secure copy over the network
Dfl Default
Wi-Fi Wireless fidelity
LTE Long-Term Evolution
BLE Bluetooth low energy device
DSI Display Serial Interface
CSI Camera Serial Interface

A2B Automotive Audio Bus
Table 3 : Definition, Acronyms and Abbreviations

 References

No. Document Version Remarks

1 Release note V2.1 2.1 Meta Layer Release v2.1

2 Alexa_User_Guide_v0.1 0.1 Alexa User Guide

3 FlashDocument.pdf - MGM111 Zigbee module
flashing steps

Table 4 : References

Introduction
 Purpose of the document

 Purpose of this document is to use/understand/flash/demonstrate interfaces on iMX8M-
THOR96 PLATFORM firmware.

 About the System

 This system contains iMX8M reference design with multiple interfaces, can be used for
Human-machine interface experience.

Figure 1 : iMX8M Thor96 Platform Connectors

 Before You Start
 Ensure you have x86 host system having Linux Ubuntu 16.04 LTS installed
 Basic understanding of Linux commands

 Steps to build Yocto Image

We already prepared Meta-layer, which contains all the packages and BSP changes required
for Thor96 firmware image. User need to download meta-layer first to build image for Thor96.

To build Thor96 firmware on LINUX HOST PC, user need to follow below steps:

 Open command prompt (CTRL+ALT+T) and install required packages to build.
$: sudo apt-get install gcc g++ gawk wget git-core diffstat unzip texinfo gcc-
multilib build-essential chrpath socat libsdl1.2-dev libsdl1.2-dev xterm sed cvs
subversion coreutils texi2html docbook-utils python3-pip python-pip python-
pysqlite2 help2man make desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev
mercurial autoconf automake groff curl lzop asciidoc u-boot-tools

 Now we need to download new repo for Thor96. Currently we are using kernel
version 4.14.78-ga release repo.

 To download repo, first we need repo utility. For that need to follow below steps:
$: mkdir ~/bin
$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$: chmod a+x ~/bin/repo
$: PATH=${PATH}:~/bin

 Now Download Yocto Project environment into local directory
$: mkdir thor96-yocto-bsp
$: cd thor96-yocto-bsp
$: repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-
linux-sumo -m imx-4.14.78-1.0.0_machinelearning.xml
$: repo sync

 Above repo sync command will download default NXP source code into our local
directory “thor96-yocto-bsp”.

 Now we need to copy our meta-layer “meta-einfochips” into “sources” folder.
 “Meta-einfochips” contains source code for our both the custom boards AIML and

THOR96.
 Therefore, we need to setup our environment based on target machine (board).
 For that we need to follow below steps: (Setup Yocto Build)

Apply patch “0001-iMX8-Added-required-BBLAYERs-in-local-bblayer.conf.patch”
$: cd sources/meta-fsl-bsp-release
$: git apply ../meta-einfochips/conf/0001-iMX8-Added-required-BBLAYERs-in-
local-bblayer.conf.patch
In above patch we add three new BBLAYERs to our local bblayers.conf (i.e. meta-
webserver, meta-einfochips, meta-imx-machinelearning)

Now setup build environments for Thor96 board.
$: cd ../../

$: EULA=1 MACHINE=imx8mqthor96 DISTRO=fsl-imx-xwayland source ./fsl-
setup-release.sh -b bld-xwayland-thor96

 After successful setup, we got new build directory bld-xwayland-thor96, if it is not
there previously. Make sure in build directory “conf/bblayers.conf” contains all our
required BBLAYERs (which we added through patch).

 Now we are good to go and can build image.

$: bitbake fsl-image-qt5

 If user want to clean previously build image and want to run it again then we must first
clean it with command “cleanall” or “cleansstate”
$: bitbake fsl-image-qt5 -c cleanall

$: bitbake -v fsl-image-qt5 (If user want to turn on verbose)

 If user want to clean any particular package then also we can do that with command
“cleanall” or “cleansstate”
$: bitbake <PACKAGE_NAME> -c cleanall
$: bitbake <PACKAGE_NAME>

e.g.
$: bitbake linux-imx -c cleanall
$: bitbake linux-imx (Build linux kernel only)

Same way
$: bitbake u-boot-imx -c cleanall
$: bitbake u-boot-imx (Build uboot code only)

$: bitbake imx-gpu-sdk -c cleanall
$: bitbake imx-gpu-sdk (Build gpu sdk only)

$: bitbake opencv -c cleanall
$: bitbake opencv (Build opencv package)

$: bitbake python3-numpy -c cleanall
$: bitbake python3-numpy (Build numpy python package for python3)

 Please note that, if you re-build any module then it is better to re-build all modules,
which are dependent on that module. For example, if you change anything in Linux
kernel code and rebuild it using above commands then you must need to re-build
kernel-module-laird, imx-gpu-sdk etc. packages to avoid conflicts.

 After successful build final sd card image reside at below location:
thor96-yocto-bsp/bld-xwayland-thor96/tmp/deploy/images/imx8mqthor96/
Filename should be fsl-image-qt5-imx8mqthor96.sdcard.bz2 which is soft link of
original build image file fsl-image-qt5-imx8mqthor96-
<TIMESTAMP>.rootfs.sdcard.bz2

 Get the firmware package
 Download the provided SD card (sdcad.bz2) image in Linux pc
 Open terminal in host pc from left desktop panel or using keyboard shortcut (ctrl + alt

+ t)
 From command terminal traverse the location where downloaded firmware image is

residing using cd command
$: cd /home/user/download/imximages/

 use ls command to verify the existence of downloaded image
$: ls -l

 Verify md5 check sum of downloaded image with given md5sum.
$: md5sum <image name>.sdcard.bz2

 Extract the provided .bz2 image using bunzip2 command, which will take couple of
minutes.
bunzip2 -dkf <image_name>.sdcard.bz2

 Once done, will end with .sdcard image in the same directory and can again be verified
using ls -l command.

 Flash the firmware image to SD Card

 Plugin micro SD card into x86 host pc
 Verify the node created for SD card into /dev directory

$: ls -l /dev/sd*
 Open terminal and traverse the location where downloaded firmware image is residing

using cd command
 Ensure the extracted firmware image's file format is sdcard using ls -l command
 Apply below command for flashing if the SD card’s entry in Linux is /dev/sdb

$: sudo dd if=<image_name>.sdcard of=/dev/sdb bs=1M conv=fsync ;sync
 Above command will take couple of minutes or more (depending upon host machine

config) to flash the SD card
 Once done plug-out and replug-in the sd card, two drives will get mounted if the above

gets successful, named <boot> and <rootfs>
 Eject (safely remove) SD card from host pc and plug it into board's sdcard slot

 Hardware Installation
 Place hardware board on statically clean place
 Plug flashed SD card to J5 SD card slot.
 Plug serial cable's micro end to board's J10 Connector (near Ethernet connector) and

USB end to host x86 pc's usb connector.
 Plug Ethernet cable to board's Ethernet connector J12.
 Apply 12V-5A power supply (provided with board) to board on J14 DC_IN connector.

After all the other hardware setup is done and required interfaces are connected to
board.

Figure 2 : Thor96 Platform UART Connections

 Open board's terminal- console (minicom) on x86 host pc
 Ensure SD card is flashed and serial cable is plugged in into board as per mentioned

in hardware setup.
 Attached serial cable's USB end to host x86 PC's USB.
 Ensure minicom is installed in x86 Ubuntu pc
 Apply below command to open serial command's setting.

$: sudo minicom -s
 set baud rate and other setting as per below

o baud rate=115200,
o parity=none
o hardware flow control = none
o software flow control = none
o serial device= /dev/ttyUSB0
o save setup as dfl

 Once board gets power-up, above configured terminal will show logs on x86 and can
interact with board using this open terminal

RUNNING-DEMOS

1. Ethernet demo
 Plug in Ethernet cable to target board as per above figure.
 Power up the board.
 Once board gets booted, apply below command using console (minicom require)

ifconfig.
ping <any server ip>

2. HDMI Demo
 Ensure board is not powered up and SD card is flashed with the latest provided

image.
 Insert HDMI cable into board's J2 HDMI connector.
 Apply power to board and go to terminal of x86 host system and open board’s

console as mentioned above
 Hold boot on u-boot screen by pressing any key on host machine

keyboard(immediate after boot within 3 seconds)
 Apply dtb file changes as per below command on u-boot console

setenv fdt_file fsl-imx8mq-thor96.dtb
saveenv
boot

 Console will show booting logs
 Once booting is completed, console will hold on login prompt where user can enter

username as root. (no password)
 At this time connected HDMI display will show grey image of desktop and should stop

complaining about "No Signal"

Play Video Test pattern on HDMI display

 Go to board's console and type below command from x86 minicom
gst-launch-1.0 videotestsrc ! autovideosink

 Above command will show color strips on HDMI display

Play local videos on HDMI display with audio

 Ensure Ethernet is connected with board
 Go to board's console and type below command from x86 minicom

ifconfig
 Get the ip address of Ethernet eth0 interface and note down.
 Go to x86 host system and download sample mp4 video with audio.
 Locate to video location from command line in x86 (no minicom require)
 Apply below command

$: scp ./Sample_Video_with_audio.mp4 root@<noted ip address of
board>:/home/root/

 This will copy the video file from host x86 to board's /home/root location
 Go to board's console (require minicom) and ensure video got copied using ls -l

command, will show you Sample_Video_with_audio.mp4 in current directory.
 Be in the board's console and apply below command to play video over HDMI Display

with audio (HDMI Display should have support of audio)

gst-launch-1.0 filesrc location=/home/root/Sample_Video_with_audio.mp4 !
decodebin name=dec ! videoconvert ! autovideosink dec. ! audioconvert !
audioresample ! alsasink device=plughw:3,0

Above command will print logs on console of board and will be played over HDMI
display with audio.

Or

gplay-1.0 Sample_Video_with_audio.mp4

Here, to play audio successful user must need to have correct hardware entry inside
/etc/asound.conf. If hardware 0 is specified then audio will be played on SAI audio
jack and if hardware 3 is specified then audio will be played on HDMI. By default,
audio will be played over HDMI.

3. Dual Display Demo

 Ensure board is not powered up and SD card is flashed with the latest provided
image.

 Insert one HDMI cable into board's J2 HDMI connector, another HDMI cable to
HDMI2 on j15 connector

 Apply power to board and go to terminal of x86 host system and open board’s
console as mentioned above

 Apply dtb file changes as per below command on u-boot console
setenv fdt_file fsl-imx8mq-thor96-dual-display-b3.dtb
saveenv
boot

 Console will show booting logs
 Login to board using root username with no password.

Play local videos on HDMI display (Dual)

 Copy local sample_video.mp4 & sample_video2.mp4 videos using scp command to
on board sd card as mentioned in above demo.

 Go to board's console (require minicom) and ensure video got copied using ls -l
command, will show you sample_video.mp4 in current directory.

 Apply below command to play video over HDMI(j2) Display
gst-launch-1.0 filesrc location=sample_video.mp4 typefind=true !
video/quicktime ! qtdemux ! queue max-size-time=0 ! vpudec ! queue max-size-
time=0 ! kmssink sync=true &

 With not much delaying apply below command to play video over HDMI2 (j15) Display
gst-launch-1.0 -v filesrc location=sample_video2.mp4 typefind=true !
video/quicktime ! aiurdemux ! queue max-size-time=0 ! vpudec ! waylandsink &

 The both the connected HDMI will show dual video demo playback.

Create RTSP network for network stream testing
 First Connect Thor96 board with linux PC where we created RTSP network.
 We first create static network in linux PC.
 For static IP, edit network (Ethernet) connection as given figures.

Figure 3 : Edit network connection

Figure 4 : Create Static network

 Here we edit Ethernet connection and change IPV4 setting to “manual”.
 Set static IP and gateway to 192.168.1.1 with netmask 255.255.255.0.
 Now we setup RTSP stream server on Linux PC as per below images.
 Open VLC media player and start network stream.

Figure 5 : Start Network Stream in VLC

Figure 6 : Add Video file for RTSP stream

 Provide any video file that we want to stream. i.e. big_buck_bunny.mp4

Figure 7 : Verify Video details

Figure 8 : Select RTSP option

Figure 9 : Provide video stream name

Figure 10 : Select Video codec

Figure 11 : Start Network Streaming

 After above steps VLC work as network stream and make sure that stream should be
in loop. Therefore, after finishing video it starts over again.

 Now set static IP on board as well.
ifconfig eth0 192.168.1.2

Play Network stream and local videos on HDMI display (Dual)

 Ensure the network bandwidth.
 To play network stream on DSI (HDMI2 – j15) display, create an rtsp server on any

host machine (i.e. x86) and play video over network, (Follow above steps) and note IP
address and port number for rtsp server (host machine).

 In board’s console apply below command to play the same stream over the network

gst-launch-1.0 playbin uri=rtsp://<Ip_add>:<port>/<video stream name >
uridecodebin0::source::latency=300 &

E.g. based on above setting for VLC and local LAN:
gst-launch-1.0 rtspsrc location=rtsp://192.168.1.1:8554/test ! decodebin !
kmssink sync=true &

 Play simultaneously local video over HDMI1 (j2) using below command.
gst-launch-1.0 filesrc location=sample_video.mp4 typefind=true !
video/quicktime ! qtdemux ! queue max-size-time=0 ! vpudec ! queue max-size-
time=0 ! waylandsink sync=true &

Play QT demo on HDMI display (Dual)
/usr/share/videohmiapp-1.0/VideoHMIApplication
/usr/share/chemicalplanthmi-1.0/ChemicalPlantHMI

Make sure that weston service should be started first.
For more details, see Section 21 and 22 (QT Demos Details).

4. HDMI2 Touch Panel Demo

Play local videos on HDMI display

 Copy local sample_video.mp4 videos using scp command to on board sd card as
mentioned in above demo.

 Insert HDMI cable into board's J15 HDMI2 connector and touch USB to board’s USB.
 Apply power to board and go to terminal of x86 host system and open board’s

console as mentioned above
 Hold boot on u-boot screen by pressing any key on host machine keyboard

(immediate after boot within 3 seconds)
 Apply dtb file changes as per below command on u-boot console

setenv fdt_file fsl-imx8mq-thor96-dcss-adv7535-b3.dtb

setenv mmcargs 'setenv bootargs ${jh_clk} console=${console}
root=${mmcroot} video=HDMI-A-1:1280x800-12@70'
saveenv
boot

 Console will show booting logs
 Once booting is completed, console will hold on login prompt where user can enter

username as root. (no password)
 Once boot completes apply below commands

systemctl stop weston
 Start playback using below command

gst-launch-1.0 filesrc location=video.mp4 typefind=true ! video/quicktime !
aiurdemux ! queue max-size-time=0 ! vpudec ! queue max-size-time=0 !
autovideosink

Touch Demo

 Ensure touch panel is connected to board using USB and is powered up.
 Go to board's console (require minicom) , log in and apply below commands

ls /dev/input/ -l

 Find entry as per below

lrwxrwxrwx 1 root 0 6 Nov 23 12:35 touchscreen0 -> event1

 Once received node, cat that node using below command,

cat /dev/input/touchscreen0 | hexdump

 Touch on the screen and get the events on console to validate touch

Play QT demo
/usr/share/videohmiapp-1.0/VideoHMIApplication
/usr/share/chemicalplanthmi-1.0/ChemicalPlantHMI

For more details, see Section 21 and 22 (QT Demos Details).

5. Mezzanine DSI Display Demo
 Attach dsi display MX8_DSI_OLED to high-speed mezzanine connector.

Play video on mezzanine DSI display
 After verification on mezzanine connection with h/w, power up the board.
 Go to board's console (require minicom) and immediately stop at u-boot autoboot

console by pressing any key.
 Apply below commands for changing dtb file

setenv fdt_file fsl-imx8mq-thor96-dcss-rm67191-b3.dtb
saveenv

boot
 Copy local sample_video.mp4 videos using scp command to on board sd card as

mentioned in above demo.
 Play above copied video on the OLED Display using below command

gst-launch-1.0 filesrc location= sample_video.mp4 typefind=true !
video/quicktime ! aiurdemux ! queue max-size-time=0 ! vpudec ! queue max-
size-time=0 ! autovideosink

Figure 12 : iMX8M_Thor96 Platform Mezzanine DSI OLED

6. Camera Demo

 Live stream from camera on HDMI display

 To watch live stream over the HDMI, connect HDMI Display.
 Power up the board
 Go to board's console (require minicom) and immediately stop at u-boot autoboot

console by pressing any key.
 Apply below commands for changing dtb file

setenv fdt_file fsl-imx8mq-thor96-mipi-csi.dtb
saveenv
boot

 Display will get blank and will be black only
 Attach camera module to high-speed mezzanine on CSI2 connector.
 Then apply below command

gst-launch-1.0 v4l2src device=/dev/video1 ! video/x-
raw,width=1280,height=720 ! kmssink

 Attach camera module to high-speed mezzanine on CSI1connector.
 Then apply below command

gst-launch-1.0 v4l2src device=/dev/video0 ! video/x-
raw,width=1280,height=720 ! kmssink

 This will show live streaming over the attached HDMI for couple of minutes

Note: Dual camera mode is not tested yet. Please perform above steps on single camera mode.

Live stream from camera on HDMI1 display and local Video streaming on HDMI2(DSI-HDMI)
 To watch live stream over the HDMI, connect HDMI Displays to HDMI1(J2) and

HDMI2(j15) connector.
 Attach camera module to high-speed mezzanine on CSI2 connector.
 Power up the board
 Go to board's console (require minicom) and immediately stop at u-boot autoboot

console by pressing any key.
 Apply below commands for changing dtb file

setenv fdt_file fsl-imx8mq-thor96-dual-display-b3.dtb
saveenv
boot

 Command to camera image on HDMI1

gst-launch-1.0 v4l2src device=/dev/video1 ! video/x-
raw,width=1280,height=720 ! kmssink

 Command to play video on HDMI2.

gst-launch-1.0 -v filesrc location=sample_video.mp4 typefind=true !
video/quicktime ! aiurdemux ! queue max-size-time=0 ! vpudec ! waylandsink &

 This will show live streaming over the attached HDMI for couple of minutes

 Capture image from camera

 Go to board's console (require minicom) and power up the board with above
mentioned dtb change configuration.

 Ensure Ethernet is plugged-in to get image from board to local x86 host pc.
 Apply below command to capture image from camera.

gst-launch-1.0 v4l2src num-buffers=1 ! jpegenc ! filesink location=
/home/root/test.jpg

 Above command will capture image named test.jpg in /home/root/ location
Copy image from board to local pc using below command

scp test.jpg <user name of host pc >@<ip of host pc>:/home/user/Desktop
 Go to local pc's /home/user/Desktop and watch image into image viewer to verify

captured image from board's camera.

7. Audio Codec Demo

 Go to board's console (require picocom) and power up.

 Install picocom in host machine using below command.
sudo apt-get install picocom

 After installing picocom open console use of below command
sudo picocom -b 115200 -r -l /dev/ttyUSB0

 From the above command you will get the imx8mq thor96 board’s tty console

 Type alsamixer command in console

 Following screen will get on console.

Figure 13 : Alsa Mixer Control Panel

 Note: Above alsamixer command’s required settings are already set by default and
user do not need to do anything to play or record audio. However, if user want to adjust
volume or other setting then he/she can change settings based on his/her preferences.

 You can select a different sound card by pressing F6. It will bring up a menu that shows
the known sound cards on imx8mq thor96 system.

 The default you see above is the “Playback” view. You can choose “Capture” by
pressing F4 and “All” (which includes “Playback” and “Capture”) by pressing F5. Return
to “Playback” with F3.Move right and left, respectively, through those options by
pressing the Left and Right arrow keys.

 Adjust each volume with Down to reduce the volume of a channel and Up to increase
the volume.

 You can mute and unmute any channel by pressing m.

 To play and capture the audio you need to all setting must be unmute and gain of all
channel are not to be zero.

 After done all setting press ESC button to close alsamixer utility.

 Enter below command to check the audio codec playback probed
aplay -l

 find the below log from the list
 adau1361audio [adau1361-audio], device 0: adau1x61 adau-hifi-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

 Enter below command to check audio codec capture driver probed
arecord -l

 Find below logs from the list
 adau1361audio [adau1361-audio], device 0: adau1x61 adau-hifi-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

 To playback audio enter below command
aplay -Dplughw:0,0 SAI1/sample.wav

 To record audio enter below command
arecord -Dplughw:0,0 -f dat record.wav

 To test playback with recording
arecord -Dplughw:0,0 -f dat | aplay -Dplughw:0,0 -f dat

8. LTE Demo

 Connect Quectel module with target board.

 Go To Board’s console and apply below command
pppd call quectel-ppp &;

 Edit /etc/resolv.conf as per below
nameserver 59.144.127.117

nameserver 59.144.144.46

 Save above file and apply below command
ifconfig ppp0

ping www.google.com -I ppp0

 Will be able to ping to google.com

9. USB Hub demo
 Connect USB device disk to USB port of target board

 Go to board ‘s console and apply below command
lsusb

 On Connecting usb pendrive
usb 2-1.2: new SuperSpeed USB device number 4 using xhci-hcd
usb-storage 2-1.2:1.0: USB Mass Storage device detected
scsi host0: usb-storage 2-1.2:1.0
scsi 0:0:0:0: Direct-Access SanDisk Ultra Fit 1.00 PQ: 0 ANSI: 6
sd 0:0:0:0: [sda] 30031872 512-byte logical blocks: (15.4 GB/14.3 GiB)

 On Disconnecting usb pendrive
usb 2-1.2: USB disconnect, device number 4

10. USB OTG as host
 Power up the board
 Go to board's console (require minicom) and immediately stop at u-boot autoboot

console by pressing any key.
 Apply below commands for changing dtb file

setenv fdt_file fsl-imx8mq-thor96-otg-host.dtb
saveenv
boot

 Once boot completes

 Connect USB device disk to USB OTG port of target board

 Go to board ‘s console and apply below command as same as USB hub
lsusb

 On Connecting usb pendrive
usb 2-1.2: new SuperSpeed USB device number 4 using xhci-hcd
usb-storage 2-1.2:1.0: USB Mass Storage device detected
scsi host0: usb-storage 2-1.2:1.0
scsi 0:0:0:0: Direct-Access SanDisk Ultra Fit 1.00 PQ: 0 ANSI: 6
sd 0:0:0:0: [sda] 30031872 512-byte logical blocks: (15.4 GB/14.3 GiB)

 On Disconnecting usb pendrive
usb 2-1.2: USB disconnect, device number 4.

11. USB OTG as Devices

 Connect USB cable (same like debug uart cable) USB OTG port of target board

 Run the below command
dd if=/dev/zero of=/mass_storage bs=1M seek=256 count=0
mkfs.fat /mass_storage
cat <<EOT | sfdisk --reorder /mass_storage
 ,,c
 EOT
mkfs.vfat /mass_storage
chmod 777 /mass_storage
mount -o loop /mass_storage /mnt/
mount
modprobe g_mass_storage file=/mass_storage

 Disconnect and connect the USB cable

 User will see the drive on host machine.

Figure 14 : USB Mass Storage on HOST system

Please note that on Window system mass storage been created but not seen the
drive (although we have created FAT file system). Must be an issue with Windows
system. Therefore, User need to test this with Linux system only.

12. Bluetooth

 Go to board ‘s console and apply below command
stty -F /dev/ttyUSB0 3000000
stty -F /dev/ttyUSB0 crtscts
hciattach /dev/ttyUSB0 bcm43xx 3000000 flow -t 20

 Wait until the complete the command response
hciconfig hci0 up
hciconfig hci0 -a

 User will get the hcio interface

 Run the “bluetoothctl” utility
#bluetoothctl
[bluetooth]# power on
[bluetooth]# agent on
[bluetooth]# default-agent
[bluetooth]# pairable on
[bluetooth]# scan on

Copy mac address

[bluetooth]# scan off
[bluetooth]# pair <mac address>

Approve pairing on Device if required

[bluetooth]# trust <mac address>
[bluetooth]# connect <mac address>
[bluetooth]# quit

 Sending file command.
#export $(dbus-launch)
#/usr/libexec/bluetooth/obexd &

#obexctl
[obex]# connect <mac addr>
[<mac addr>]# send <file>

[<mac addr>]# disconnect
[<mac addr>]# quit

 Play the audio over BT commands

 Collect the audio file from the support package folder.

 Get the Bluetooth headset or Bluetooth speaker.
aplay -D bluealsa:HCI=hci0,DEV=<mac addr>,PROFILE=a2dp play_audio.wav

 Get the Mobile headset,

 Connect mobile with our modem using above bluetoothctl command.

 play the music on mobile player

 run below command to capture the audio from Bluetooth
arecord -D bluealsa:HCI=hci0,DEV=<mac addr>,PROFILE=a2dp
record_audio.wav

 copy recovered file in your host PC and verify with any player on host PC

13. EEPROM

 Run below command to test EEPROM
echo hello > /sys/bus/i2c/devices/i2c-1/1-0050/eeprom
cat /sys/bus/i2c/devices/i2c-1/1-0050/eeprom | hexdump -C

14. Zigbee Demo

Description:

ZigBee 3.0 Gateway:

ZigBee 3.0 provides a foundation of commissioning and network management
mechanisms to be used in all ZigBee applications. The sample scenario presented here
demonstrates the flexibility that the ZigBee 3.0 specification provides to applications. They
also act as an excellent starting point for users wishing to build their own ZigBee 3.0
applications.

Z3Gateway, the gateway can form a centralized network, and the light and the switch can
join the centralized network by performing network steering.

The gateway provides CLI commands (application interface) to the user. User can create
new zigbee network and can remove using such CLI command set.

The CLI command "plugin network-creator start 1" create a centralized network. The
gateway application can then be triggered to allow other zigbee devices connect to this
network with the CLI command “plugin network-creator-security open-network". With
this command we can create open-network where any reset zigbee device can join the
network using the ZigBeeAlliance09 link key, or by manually entering the install code
derived link key into the gateway using the CLI command "plugin network-creator-
security set-joining-link-key". The CLI command "plugin network-creator-security
close-network" will close the network and no longer allow devices onto the gateway's
network.

Steps to test Zigbee as below:

 Copy host zigbee application to device using scp command via Ethernet if it is not there
on the board at path /home/root/zigbee/Z3GatewayHost .

 Use below command to set executable flags for binary.
chmod 777 Z3GatewayHost

 Make sure “zigbee” service is disable. User can check status of zigbee service by
“systemctl status zigbee”

 If Zigbee service is active running then disable it by “systemctl stop zigbee” and rename
“/home/root/zigbee/Z3GatewayHost_HMI” to any other name.

 Run Z3GatewayHost as below. (Please flash ncp-spi and bootloader if not flashed). Note
for board, which are shipped are already flashed.

./Z3GatewayHost

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] traceMask = 0xFF

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nHOST_INT device 75.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened SPI device /dev/spidev1.0.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nCS device 8.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nRESET device 132.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nWAKE device 74.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to
/sys/class/gpio/export.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to
/sys/class/gpio/export.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to
/sys/class/gpio/export.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Cannot write to
/sys/class/gpio/export.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] traceMask = 0xFF

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nHOST_INT device 75.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened SPI device /dev/spidev1.0.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nCS device 8.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nRESET device 132.

[../../../platform/base/hal/micro/unix/host/spi-protocol-linux.c] Opened nWAKE device 74.

Reset info: 11 (SOFTWARE)

ezsp ver 0x07 stack type 0x02 stack ver. [6.4.0 GA build 385]

Ezsp Config: set source route table size to 0x0064:Success: set

Ezsp Config: set security level to 0x0005:Success: set

Ezsp Config: set address table size to 0x0002:Success: set

Ezsp Config: set TC addr cache to 0x0002:Success: set

Ezsp Config: set stack profile to 0x0002:Success: set

Ezsp Config: set MAC indirect TX timeout to 0x1E00:Success: set

Ezsp Config: set max hops to 0x001E:Success: set

Ezsp Config: set tx power mode to 0x8000:Success: set

Ezsp Config: set supported networks to 0x0001:Success: set

Ezsp Policy: set binding modify to "allow for valid endpoints & clusters only":Success: set

Ezsp Policy: set message content in msgSent to "return":Success: set

Ezsp Value : set maximum incoming transfer size to 0x00000052:Success: set

Ezsp Value : set maximum outgoing transfer size to 0x00000052:Success: set

Ezsp Config: set binding table size to 0x0010:Success: set

Ezsp Config: set key table size to 0x0000:Success: set

Ezsp Config: set max end device children to 0x0020:Success: set

Ezsp Config: set aps unicast message count to 0x000A:Success: set

Ezsp Config: set broadcast table size to 0x000F:Success: set

Ezsp Config: set neighbor table size to 0x0010:Success: set

NCP supports maxing out packet buffers

Ezsp Config: set packet buffers to 255

Ezsp Config: set end device poll timeout to 0x0005:Success: set

Ezsp Config: set end device poll timeout shift to 0x0006:Success: set

Ezsp Config: set zll group addresses to 0x0000:Success: set

Ezsp Config: set zll rssi threshold to 0xFF80:Success: set

Ezsp Config: set transient key timeout to 0x00B4:Success: set

Ezsp Endpoint 1 added, profile 0x0104, in clusters: 8, out clusters 19

Ezsp Endpoint 242 added, profile 0xA1E0, in clusters: 0, out clusters 1

Found 0 files

Z3GatewayHost>network leave

leave 0x70

Z3GatewayHost> plugin network-creator start 1

NWK Creator Security: Open network: 0x01

Z3GatewayHost> plugin network-creator-security open-network

NWK Creator: Form: 0x00

NWK Creator Security: Start: 0x00

NWK Creator: Form. Channel: 20. Status: 0x00

NWK Creator: Stop. Status: 0x00. State: 0x00

EMBER_NETWORK_UP 0x0000

Now turn on a zigbee end device and it will be start broadcasting, will connect above
network, and on host side below log will occur.

Z3GatewayHost>Trust Center Join Handler: status = UNsecured join, decision = use preconfigured key (00),
shortid 0x2229

T0000007E:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 00 cmd 01 payload[]

T0000007E:RX len 4, ep 01, clus 0x0500 (IAS Zone) FC 08 seq 00 cmd 04 payload[00]

T0000007F:RX len 15, ep 01, clus 0x0500 (IAS Zone) FC 08 seq 01 cmd 01 payload[10 00 00 F0 16 BC 1E
FE FF 9F FD 90]

T0000007F:RX len 12, ep 01, clus 0x0019 (Over the Air Bootloading) FC 01 seq 01 cmd 01 payload[00 31
11 24 10 21 51 00 23]

QueryNextImageRequest mfgId:0x1131 imageTypeId:0x1024, fw:0x23005121

T0000007F:RX len 20, ep 01, clus 0x0500 (IAS Zone) FC 08 seq 02 cmd 01 payload[00 00 00 30 00 01 00
00 31 15 00 02 00 00 19 20 00]

T0000008F:RX len 7, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 02 cmd 01 payload[15 00 31 11]

Sent enroll response with responseCode: 0x00, zoneId: 0x00, status: 0x00

 Below log is for door sensor device which indicates open<24> and close<25>:

T00000092:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 03 cmd 00 payload[24 00 00 00 00 00]

T0000009A:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 04 cmd 00 payload[25 00 00 00 00 00]

T000000A0:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 05 cmd 00 payload[24 00 00 00 00 00]

T000000A2:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 06 cmd 00 payload[25 00 00 00 00 00]

T000000A5:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 07 cmd 00 payload[24 00 00 00 00 00]

T000000A7:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 08 cmd 00 payload[25 00 00 00 00 00]

T000000A8:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 09 cmd 00 payload[24 00 00 00 00 00]

T000000A9:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 0A cmd 00 payload[25 00 00 00 00 00]

T000000B2:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 0B cmd 00 payload[21 00 00 00 00 00]

T000000B4:RX len 9, ep 01, clus 0x0500 (IAS Zone) FC 09 seq 0C cmd 00 payload[25 00 00 00 00 00]

T000000C4:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 0D cmd 01 payload[]

T000000C8:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 0E cmd 01 payload[]

15. Thread Demo
Description:

Client/Server Sample Applications

The client and server applications demonstrate basic Thread network functionality for a
wireless sensor network. This server application acts as a data sink and collects
information from client nodes that act as sensors. The client and server communicate
using the Constrained Application Protocol (CoAP) at the application layer, with UDP
serving as the transport layer. The Silicon Labs Thread stack provides CoAP and UDP.

At startup, the server will automatically start network operations. If the node is starting for
the first time, it will form a new network called "client/server." If it had already formed a
network previously, it will simply resume network operations using the network parameters
stored in non-volatile memory in the stack. After forming or resuming, the application
establishes itself as the commissioning device of the network. This means the server is
responsible for allowing other devices to join the network.

The server sends advertisement messages to the network at regular intervals using
multicast transmission. The advertisements, sent as CoAP POST requests to the
"server/advertise" URI, inform clients in the network about the presence of the server.
When a client without a server receives the advertisement, it will begin sending sensor
data to the server. Sensor data are sent as CoAP POST requests to the "client/report"
URI, and are unicast directly to the server. In these examples, the sensor data are the
current temperature, as provided by the temperature sensor on the development board of
the client nodes.

Before attempting to join the network, the client nodes print their unique join key to the
console. This key must be provided to the commissioner (i.e., the server) before the client
will be able to join the network. For example, when joining, the client will display a
message such as:

Joining network "client/server" with EUI64 >0134047823560034 and join key "174F5B07"

In this example, "174F5B07" is the unique join key for the client and 0134047823560034
is the EUI64 of the client. The join key can be provided to the server and joining can be
enabled via the following CLI command:

expect "174F5B07"

If the EUI64 of the client is known, it can be specified in order to further assist in joining
the correct node:

expect "174F5B07" \\{0134047823560034\\}

It is important to note that each client will have a different join key. It is essential that the
server be informed of the exact join key used by the client. If the join key is not provided
to the server, or if an incorrect key is provided, the client will not be able to join. The server
host sample application can communicate with the NCP using either SPI or UART. With
SPI, the spi-server and ip-driver-app utility programs are used to interact with the NCP.

With UART, only the ip-driver-app utility program is used. spi-server will run itself in the
background. ip-driver-app runs in the foreground by default, but it can be run in the
background using shell job control features.

Steps to test thread as below:

Server Host appliation.

 move to directory path /home/root/thread/imx_host_apps/
 # cd thread/imx_host_apps/
 # cd spi-server

 Run spi_server.sh script with required parameter.
 # ./spi-server.sh 4951 spidev1.0 75 132 74 0xFF 8 --nolog &

 # cd ../

 Run ip-driver-app
 # ./ip-driver-app -s -u 4951 -t tun0 -m 4901 &

Run host server application as below.(Please flash ncp-spi for thread and bootloader if
not flashed). For join key which is unique for each client we need to run client application
and get it from their. Please see Client log in next section.

 # ./server-host -m 4901

Reset info: 0x0B (SOFTWARE)
Removing any IPv6 addresses configured on the host...
Init: 0x00
Resuming operation on network "client/server"
[2018-12-05 13:41:19.036 + 0.002] [app->driver->NCP] [MGMT] [016907]
 [NCP->driver mgmt] [MGMT]
[01630207546872656164000F0028000181031544656320323020323031382031363A35
303A353800]
[2018-12-05 13:41:19.037 + 0.001] [driver->app] [MGMT]
[01630207546872656164000F0028000181031544656320323020323031382031363A35
303A353800]
Host: Thread 2.7.1.0 GA build 245 management 3840 (Nov 6 2018 14:38:44)
NCP: Thread 2.8.0.0 GA build 385 management 3840 (Dec 20 2018 16:50:58)
[2018-12-05 13:41:19.080 + 0.043] [NCP->driver mgmt] [MGMT]
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B5]
 [driver->app] [MGMT]
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B509BE6]
[2018-12-05 13:41:19.081 + 0.001] [NCP->driver mgmt] [MGMT]
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A]
 [driver->app] [MGMT]
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A7EC18]
[2018-12-05 13:41:19.082 + 0.001] [NCP->driver mgmt] [MGMT] [016375050100]
 [driver->app] [MGMT] [016375050100]
 [NCP->driver mgmt] [MGMT] [01630C00]

 [driver->app] [MGMT] [01630C00]
 [NCP->driver mgmt] [MGMT]
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B5]
 [driver->app] [MGMT]
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B509BE6]
[2018-12-05 13:41:19.083 + 0.001] [NCP->driver mgmt] [MGMT]
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A]
 [driver->app] [MGMT]
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A7EC18]

[2018-12-05 13:41:20.563 + 1.480] [NCP->driver mgmt] [MGMT]
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B5]
[2018-12-05 13:41:20.564 + 0.001] [driver->app] [MGMT]
[01637A10636C69656E742F73657276657200000008FDE185ACB16E000008E185ACB
16E6C0AE8DBBC1A020305081EAD1EFEFF9FFD90085B509BE6]
[2018-12-05 13:41:20.567 + 0.003] [NCP->driver mgmt] [MGMT]
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A]
[2018-12-05 13:41:20.568 + 0.001] [driver->app] [MGMT]
[01637208E185ACB16E6C0AE810636C69656E742F73657276657200000008FDE185A
CB16E0000DBBC1A081EAD1EFEFF9FFD90085B509BE6A7EC18]
 [NCP->driver mgmt] [MGMT] [016375050500]
 [driver->app] [MGMT] [016375050500]

Bound to fde1:85ac:b16e:0:2f36:83f4:774:df19
Bound to fe80::ad18:eca7:e69b:505b
Resumed operation on network "client/server"
Becoming commissioner "server"
Became commissioner
Using the following thread multicast addresses:
ff32:40:fde1:85ac:b16e::1
ff33:40:fde1:85ac:b16e::1

Advertising to ff33:40:fde1:85ac:b16e::1
[2018-12-05 13:43:36.660 + 60.184] [IP stack->driver->NCP] [DATA]
[60001641001F110AFDE185ACB16E00002F3683F40774DF19FF330040FDE185ACB1
6E00000000000116331633001F542F5202544CB8]
[2018-12-05 13:43:36.668 + 0.008] [NCP->driver->IP stack] [DATA]
[60001641001F110AFDE185ACB16E00002F3683F40774DF19FF330040FDE185ACB1
6E00000000000116331633001F542F5202544CB8]

server-host> help
Usage notes:
type description
<uint8_t> 8-bit unsigned int, eg: 255, 0xAB
<int8_t> 8-bit signed int, eg: -128, 0xA9

<uint16_t> 16-bit unsigned int, eg: 3000 0xFFAA
<string> A string, eg: "foo" or {0A 1B 2C}
* Zero or more of the previous type
advertise
bootloader...
coap...
coaps...
exit
expect <string> <string> *
help
icmp...
info
network-management...
reset
udp...
versions
server-host> expect "GHHFBM02"

Sent steering data

[2018-12-05 13:48:37.980 + 0.167] [IP stack->driver->NCP] [DATA]
[600A612D000C1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000C02D66000FB81]
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c
[2018-12-05 13:48:38.081 + 0.101] [IP stack->driver->NCP] [DATA]
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E197E6244FB83E7]

[2018-12-05 13:48:48.227 + 10.146] [NCP->driver->IP stack] [DATA]
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F0634202FB84E7]
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c
[2018-12-05 13:48:48.260 + 0.033] [IP stack->driver->NCP] [DATA]
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E197C6244FB84E7]

[2018-12-05 13:48:58.406 + 10.146] [NCP->driver->IP stack] [DATA]
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F0614202FB85E7]
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c
[2018-12-05 13:48:58.440 + 0.034] [IP stack->driver->NCP] [DATA]
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E197A6244FB85E7]

[2018-12-05 13:49:08.585 + 10.145] [NCP->driver->IP stack] [DATA]
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F05F4202FB86E7]
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c
[2018-12-05 13:49:08.619 + 0.034] [IP stack->driver->NCP] [DATA]
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E19786244FB86E7]

[2018-12-05 13:49:18.765 + 10.146] [NCP->driver->IP stack] [DATA]
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F05B4202FB88E7]
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c
[2018-12-05 13:49:18.799 + 0.034] [IP stack->driver->NCP] [DATA]
[600A612D000E1140FDE185ACB16E00002F3683F40774DF19FDE185ACB16E000074
34C3C136E3028C16331633000E19746244FB88E7]

[2018-12-05 13:49:28.945 + 10.146] [NCP->driver->IP stack] [DATA]
[6000000000211140FDE185ACB16E00007434C3C136E3028CFDE185ACB16E00002F
3683F40774DF19163316330021F0594202FB89E7]
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c

Client Host application:

For Client application, please use a ThunderBoard and flash images from
ThunderBoard_Bootloader_client. When board is up and will be able to see console.
client> join
client> Joining network "client/server" with EUI64 >90FD9FFFFE5FD1DD and join key
"GHHFBM02"
ERR: Joining failed: 0x02

client> Joined network "client/server"
Waiting for an advertisement from a server
Attached to server at fde1:85ac:b16e:0:2f36:83f4:774:df19
Reporting 43000 to server at fde1:85ac:b16e:0:2f36:83f4:774:df19
Reporting 43000 to server at fde1:85ac:b16e:0:2f36:83f4:774:df19

When server uses join key “GHHFBM02” and excepts it as it’s client then client will
send some data acting as a sensor and Server will receive logs for client sending
data and server receiving is as below:
Client :
Reporting 43000 to server at fde1:85ac:b16e:0:2f36:83f4:774:df19’
Server:
Received 43000 from client at fde1:85ac:b16e:0:7434:c3c1:36e3:28c

Note: Please refer Flash Document (FlashDocument.pdf) for the steps to flash.

16. USER LED
 Run the below command to control the Led

 BT_LED
echo 96 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio96/direction
cat /sys/class/gpio/gpio96/value
echo 1 > /sys/class/gpio/gpio96/value

 WIFI_LED
echo 97 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio97/direction
cat /sys/class/gpio/gpio97/value
echo 1 > /sys/class/gpio/gpio97/value

 LED_1
echo 117 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio117/direction
cat /sys/class/gpio/gpio117/value
echo 1 > /sys/class/gpio/gpio117/value

 LED_2
echo 118 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio118/direction
cat /sys/class/gpio/gpio118/value
echo 1 > /sys/class/gpio/gpio118/value

 LED_3
echo 124 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio124/direction
cat /sys/class/gpio/gpio124/value
echo 1 > /sys/class/gpio/gpio124/value

 LED_4
echo 125 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio125/direction
cat /sys/class/gpio/gpio125/value
echo 1 > /sys/class/gpio/gpio125/value

17. Low Power Expansion GPIO

 Run the below command to control the Led

 LS_GPIO2_A
echo 42 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio42/direction
cat /sys/class/gpio/gpio42/value
echo 1 > /sys/class/gpio/gpio42/value
echo 0> /sys/class/gpio/gpio42/value

 LS_GPIO2_B
echo 43 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio43/direction
cat /sys/class/gpio/gpio43/value

echo 1 > /sys/class/gpio/gpio43/value
echo 0 > /sys/class/gpio/gpio43/value

 LS_GPIO3_C
echo 88 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio88/direction
cat /sys/class/gpio/gpio88/value
echo 1 > /sys/class/gpio/gpio88/value
echo 0 > /sys/class/gpio/gpio88/value

 LS_GPIO3_D
echo 84 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio84/direction
cat /sys/class/gpio/gpio84/value
echo 1 > /sys/class/gpio/gpio84/value
echo 0 > /sys/class/gpio/gpio84/value

 LS_GPIO2_E
echo 39 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio39/direction
cat /sys/class/gpio/gpio39/value
echo 1 > /sys/class/gpio/gpio84/value
echo 0 > /sys/class/gpio/gpio84/value

 LS_GPIO3_F
echo 85 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio85/direction
cat /sys/class/gpio/gpio85/value
echo 1 > /sys/class/gpio/gpio85/value
echo 0 > /sys/class/gpio/gpio85/value

 LS_GPIO2_G
echo 40 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio40/direction
cat /sys/class/gpio/gpio40/value
echo 1 > /sys/class/gpio/gpio40/value
echo 0 > /sys/class/gpio/gpio40/value

 LS_GPIO3_H
echo 86 > /sys/class/gpio/export

echo out > /sys/class/gpio/gpio86/direction
cat /sys/class/gpio/gpio86/value
echo 1 > /sys/class/gpio/gpio86/value
echo 0 > /sys/class/gpio/gpio86/value

 LS_GPIO3_I
echo 76 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio76/direction
cat /sys/class/gpio/gpio76/value
echo 1 > /sys/class/gpio/gpio76/value
echo 0 > /sys/class/gpio/gpio76/value

 LS_GPIO1_J
echo 77 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio77/direction
cat /sys/class/gpio/gpio77/value
echo 1 > /sys/class/gpio/gpio77/value
echo 0 > /sys/class/gpio/gpio77/value

 LS_GPIO3_K
echo 5 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio5/direction
cat /sys/class/gpio/gpio5/value
echo 1 > /sys/class/gpio/gpio5/value
echo 0 > /sys/class/gpio/gpio5/value

 LS_GPIO1_L
echo 3 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio3/direction
cat /sys/class/gpio/gpio3/value
echo 1 > /sys/class/gpio/gpio3/value
echo 0 > /sys/class/gpio/gpio3/value

18. CAN Interface demo
 CAN interface can be tested by communicating between two boards.
 Connect two boards with supplied CAN cable.
 Enable CAN in both the boards with below command with board’s console.

ip link set can0 type can bitrate 125000;ifconfig can0 up

 Configure one board as receiver as below command.

candump can0 &

 Configure another board as sender and send data using below command

cansend can0 18FC2A00#0100000000000000

 Observe on receiver side board receiving data

19. NOR Flash demo
 Go to Board’s console and create text file and write some data into it by below

command

vi write.txt

 Once done writing save and quit the above file by below command.
<ESC><:><wq>

 Check for the Nor flash node by below command

ls -l /dev/mtd0

 Erase NOR flash using below command

flash_eraseall /dev/mtd0

 Write the created file into NOR flash using below command.

time dd if=write.txt of=/dev/mtd0

 Read from NOR flash from the same location

dd if=/dev/mtd0 of=read.txt

cat read.txt

 Compare the read.txt, it should be same as write.txt

 Please note that, when we write data, we write only a few bytes of data. However, when
we read, we read the whole partition instead of the initial few lines. Due to that, we
see junk characters in the place where we did not write anything. So user need to read
the file at very first few lines using vim and verify its data.

20. Wi-Fi Demo
 Open terminal and follow the below commands to run Wi-Fi demo

ip link show wlan0

3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
 link/ether 00:25:ca:14:11:6c brd ff:ff:ff:ff:ff:ff

 Edit /etc/wpa_supplicant.conf file as per below in target board using vi

vi /etc/wpa_supplicant.conf

 Add following contains in /etc/wpa_supplicant.conf and save it.

ctrl_interface=/var/run/wpa_supplicant

ctrl_interface_group=0
update_config=1

network={
ssid="closenet"
scan_ssid=1
key_mgmt=WPA-PSK
psk="123456789"
}

• Turn on hotspot from mobile device or from Router.
• Change its ssid name /Network name to “closenet” and password to "123456789"

(Create Close network). Make sure Security Type must be WPA-PSK or WPA2-PSK.

Note: User can select any name (ssid) and password (psk) except any space or
special character here and can change above wpa_supplicant.conf file accordingly.
For example, ssid “Anil’s iPhone” is not valid one.

wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf
iw wlan0 link
ip address list wlan0
udhcpc -i wlan0 -n -q
ip address list wlan0
ip route show
ping <Any network ip >

 Response should be as per below logs

PING 192.168.43.1 (192.168.43.1) 56(84) bytes of data.
64 bytes from 192.168.43.1: icmp_seq=1 ttl=64 time=12.6 ms
64 bytes from 192.168.43.1: icmp_seq=2 ttl=64 time=10.6 ms
64 bytes from 192.168.43.1: icmp_seq=3 ttl=64 time=27.7 ms
64 bytes from 192.168.43.1: icmp_seq=4 ttl=64 time=6.34 ms
64 bytes from 192.168.43.1: icmp_seq=5 ttl=64 time=22.8 ms
64 bytes from 192.168.43.1: icmp_seq=6 ttl=64 time=8.26 ms

 The above ping response validates Wi-Fi’s working state

21. QT Chemical Plant demo
Description:

This demo is the showcase for chemical plant and it demonstrate how we can control
chemical plant through GUI using QT application. Here for reference we use three different

chemical liquids with Tank1, Tank2 and Tank3. In practical, they may be less or more.
Accordingly, we can change our GUI application.

Mixture Tank (at bottom in image) contains the mixture of different chemical liquid (Tank1,
Tank2, Tank3). We give heat to mixture for product output at desired temperature. Mixture
Tank Temperature shows current Mixture Tank temperature with Thermometer. We also
added Mixture Tank Temperature Graph at the top-left corner for graphical
representation of Mixture Tank Temperature with reference to timescale. We also added
Mixture Tank FAN to demonstrate Mixture Tank filling process. FAN is running when we
filling into mixture tank and stop when filling is done and mixture tank is empty.

Figure 15 : QT Chemical Plant

Every Tank have its own Tank Control Menu to operate that tank. Each Tank Control
Menu contains Tank Level, Tank Status, Tank Filling Motor Control, Tank Pump
Control etc. Pump Motor or Tank Filling Motor is useful to fill liquid into respective Tank.
Pump Motor START button will start fill that Tank and STOP button will stop filling it. When
filling liquid is in progress respective filters (black/white circular shape) above the Pump
will rotate and display progress. We also have Pump START and STOP button. It is useful
for filling liquid from Tank to Mixture Tank. (It will empty respective Tank and fill into Mixture
Tank.) Filter below pump will show progress for this.

Tank Level (inside control menu) display liquid level inside that Tank. Each Tank has its
own Tank level and we can see all this level on Tank’s Level Graph. Tank’s Level Graph
shows liquid level for each Tank as well as Mixture Tank level.

Tank Status (inside control menu) show status of the pump. Its shows “Close” status with
RED LED when pump is not working (in action) and shows “Open” with Green LED when
we run that pump to fill mixture tank.

We also added Control settings for events, settings, alarms and helps. In addition, there
are two modes (Auto Mode and Manual Mode) to run the demo.

Steps to run Demo:

 Run command:
/usr/share/chemicalplanthmi-1.0/ChemicalPlantHMI

 Click on “Auto” Plant mode
It will run demo in auto mode. In auto mode, all tanks liquid is falling into mixture
tank. So first all tank level is decrease to zero gradually and mixture tank level is
increasing. After all tanks are empty, we start filling them again and at the same
time, we remove mixture tank product.

 Click on “Manual” Plant Mode.
Now User has all access to start and stop pump manually.

Based on mixture and all tank data, graphs data also changing in both modes.

Figure 16 : Running Chemical Plant demo

As we can see in above figure 16 that, when we run demo in auto mode first Tank-1
level is decreasing (48 in above figure) and respectively mixture value is increasing.

22. QT Video HMI Application demo

Steps to run demo:

/usr/share/videohmiapp-1.0/VideoHMIApplication

Description:

This demo is the showcase for displaying any plant or production room’s conditions and
monitoring them. Here for reference we use four different production rooms with Room-1,
Room-2, Room-3 and Room-4. In practical, they may be less or more. Accordingly, we
can change our GUI application.

Figure 17 shows home screen of Video application. On default screen, we read real time
room temperature and display on main screen. In addition, we capture same temperature
log in Temperature graph as well with four different colors. (Shown at bottom)

Figure 17 : HMI Video Application

We can also define temperature range here. For example, 0 to 60 where 0 is minimum
and 60 is maximum acceptable temperature. When room’s temperature goes beyond the
acceptable range, demo app will play the alarm sound and room‘s temperature
notification label color change blue to red with maximum or minimum notification.
In figure 17, we can see that Room-1 temperature (60 C) is beyond maximum limit (50 C)
so label color is RED.

Here we get Room temperature data from CSV file. However, in actual, we can get data
from different temperature sensors. Therefore, we will get real time data.

Figure 18 : Running multiple video files

As shown in below Figure 18 and figure 19, we can also run multiple video files and camera
streaming on Room Camera Screen. For that first User need to click on Room Camera
tab on top left corner. It will display media player through which we can open any video
file. Open button (in media player) is useful to browse and open video file. After opening,
we can play video by PLAY button (symbolic). We can also pause running video by
PAUSE (symbolic) button. URL Button is useful for live streaming. User need to give RTSP
stream video command to live streaming. (Figure 19)

Figure 19 : Live Camera Streaming over RTSP

On Right – Top Corner, we have different Screen selection option. By default, default
screen is selected, but user can go to particular camera screen to monitor that Room. For
example, user can select Room-1 to monitor Room-1 condition. (Figure 20)

As shown in Figure 20, only Room-1 information is displayed. We can live stream or play
video for room -1 only. Also temperature graph show only Room-1 data.

Select Date (on right top) widget is useful for displaying all room’s temperature on graph
based on between start date-time and end date time. User can select data and time by
Clicking Calendar button just right after start data-time and end date-time text area.
(Figure 21)
As shown in Figure 22, based on selected date and time we show Temperature History
graph.

Figure 20 : Room-1 Screen

Figure 21 : Select DATE-TIME

Figure 22 : Temperature History based on selected time

We also have following Controls (at Right-bottom side):
1) Settings:
 Not implement.
2) Data on cloud
 Not implement.
3) Temperature Setting: (Figure 23)

 Open the room’s temperature setting pop-up window.
 It is useful for set minimum or maximum room’s temperature based on selection

of rooms.
 4) Data History: (Figure 24)

 Open the window with table and graph.
Data History Table:
Display minimum or maximum temperature of the rooms with date and time.

Figure 23 : Room Temperature Limit setting

Figure 24 : Data History Screen

Data History graph:
Display history of all the room’s temperature on the graph.
5) Alarm
 Not implement
6) Helps

NOTE: Some of the QT features (like calendar widget closing) are not working fine in board due
to X-WAYLAND platform dependency. It is QT’s limitation that it will not work fine in WAYLAND
and needed EGLFS Platform. In addition, QT media player video play sluggish. All this limitation
not observed on x86 Machine with same QT code.

23. Alexa Demo
We have prepared Alexa demo to showcase Board ZigBee capability. For that we have add
support for ZIGBEE service, apache2 with cgi-bin and SSL, mosquito, php. Kindly go through
Alexa_User_Guide_v0.1 user guide.

Alexa_User_Guide_v
0.1.docx

24. A2B Demo
Our board have A2B capability where we can connect multiple A2B devices using evaluation
boards. Here we demonstrate simple one device A2B demo to display A2B capability.

To perform A2B demo we need the EVAL-AD2428WB1BZ board, audio Aux cable, A2B Cable and
Earphone.

Headphone is connect to J10 connector of Thor96 board. A2B cable is connected between Thor96
board J20 and EVAL-AD2428WB1BZ board J7.

Audio source input (Mobile) given to LINEIN port of EVAL_AD2428WB1BZ board through Aux
cable. Aux cable is connected between mobile and LINEIN (J2) of EVAL-AD2428WB1BZ board.

Now, play the song in mobile and listen it on headphone. Please see figure 25 for more details.

Figure 25 : A2B Demo Setup

 Download and Copy the A2B_demo_source.tar.gz file into thor96 board's home
(/home/root/) directory.

 Extract A2B_demo_source.tar.gz file
tar -xvzf A2B_demo_source.tar.gz

 Go to desire path and apply below command to short terminal console path

cd /home/root/Target/examples/demo/a2b-linux/a2b-adsp-sc584-
linux/Makefiles

PS1='[\A]\u:\W>'

 Download and Copy asound.state file to board. Apply below command to enable alsa
control setting in ADAU1361 codec.

alsactl --file ~/asound.state restore 0

 Apply below command to enable the sync clock for A2B trans-receiver

arecord -Dplughw:1,0 -f S32_LE -r 48000 -c 2 | aplay -Dplughw:0,0 -f S32_LE -r
48000 -c 2 &

 Apply below command to discover and start the playback path in network the slave
code in network

./staging/bin/a2bapp-linux –d

 Connect the audio source AUX cable in slave device's LINE_IN port and listen the
sound on thor96 board's J10 (HP) port.

NOTE: A2B_demo_source.tar.gz file contains A2B user space code, which is only for Arrow and
einfochips internal testing purpose. This source code is ANALOG proprietary code and it must not be
share without permission of Analog in any case.

KNOWN ISSUES AND LIMITATIONS

 Please refer the Release note V2.1

CONTACT US

For any queries related to product, please contact us at arrow.imx8hmi@einfochips.com

